[Analyse du gap de photons dans des dispositifs photoniques]
En utilisant le modèle de Kronig–Penney et la méthode des différences finies dans le domaine temporel (DFDT), on analyse les propriétés optiques de cristaux photoniques parfaits. Au moyen du modèle de Kronig–Penney, nous calculons la structure de bande photonique dans un réseau carré de tiges diélectriques à distance a séparées par de l'air. Les structures de bande présentent un gap pour les deux polarisations. Nous analysons l'effet du remplissage pour les basses et les hautes fréquences. On montre que dans les basses fréquences, le bas de bande transverse électrique (TE) est indépendant du facteur de remplissage. Par contre, la fréquence du haut de bande augmente rapidement avec le remplissage en air. Par la méthode DFDT, nous simulons le champ électrique lors de la propagation d'une impulsion à travers la structure. Nous calculons les propriétés optiques d'un défaut unique et d'une paire de défauts incorporés dans le cristal photonique.
A detailed analysis, based on Kronig–Penney model and finite-difference time-domain (FDTD) method, is used to explain the air-filling factor effect on the optical properties of defect-free photonic crystals. By the use of the Kronig–Penney model, we calculated the photonic band structure for electromagnetic waves in a structure consisting of a periodic square array of dielectric rods of lattice constant a separated by air holes. Gaps in the resulting band structures are found for waves of both polarisations. We analysed the air-filling factor effect on both polarisations in low and high frequency regions. It is shown that the frequency of the lower TE (transverse-electric) band edge is independent of the air-filling factor in the low frequency region. The opposite behaviour holds for the upper band edge, growing rapidly with the air-filling factor. Using the FDTD we simulated the electric field as the pulse propagates through the structure. The results of both approaches are compared, and the operation characteristics of the measuring air-filling factor device are described. We investigate the optical properties of a single and two defects incorporated in the PC, which can be potentially applied to ultra small surface-emitting-type channel drop filter. It is shown that the frequency and polarisation of the dropped light can be controlled by changing the size and/or shape of the defect. The electric field distribution calculations show that the electric field for a given frequency is located only at the defect, which means that each defect can detect only its corresponding wavelength.
Accepté le :
Publié le :
Mot clés : Structure de bande photonique, Modèle de Kronig–Penney
F. Ouerghi 1, 2 ; W. Aroua 1, 2 ; F. Abdel Malek 2 ; H. Mejatty 1 ; H. Bouchriha 1
@article{CRPHYS_2004__5_2_279_0, author = {F. Ouerghi and W. Aroua and F. Abdel Malek and H. Mejatty and H. Bouchriha}, title = {Analysis of photonic band gap structure for the design of photonic devices}, journal = {Comptes Rendus. Physique}, pages = {279--283}, publisher = {Elsevier}, volume = {5}, number = {2}, year = {2004}, doi = {10.1016/j.crhy.2004.01.024}, language = {en}, }
TY - JOUR AU - F. Ouerghi AU - W. Aroua AU - F. Abdel Malek AU - H. Mejatty AU - H. Bouchriha TI - Analysis of photonic band gap structure for the design of photonic devices JO - Comptes Rendus. Physique PY - 2004 SP - 279 EP - 283 VL - 5 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2004.01.024 LA - en ID - CRPHYS_2004__5_2_279_0 ER -
%0 Journal Article %A F. Ouerghi %A W. Aroua %A F. Abdel Malek %A H. Mejatty %A H. Bouchriha %T Analysis of photonic band gap structure for the design of photonic devices %J Comptes Rendus. Physique %D 2004 %P 279-283 %V 5 %N 2 %I Elsevier %R 10.1016/j.crhy.2004.01.024 %G en %F CRPHYS_2004__5_2_279_0
F. Ouerghi; W. Aroua; F. Abdel Malek; H. Mejatty; H. Bouchriha. Analysis of photonic band gap structure for the design of photonic devices. Comptes Rendus. Physique, Volume 5 (2004) no. 2, pp. 279-283. doi : 10.1016/j.crhy.2004.01.024. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.01.024/
[1] Photonic Crystals, Modeling the Flow of Light, Princeton University Press, Princeton, NJ, 1995
[2] et al. Experimental demonstration of guiding ant bending electromagnetic waves in a photonic crystal, Science, Volume 282 (1998), pp. 247-277
[3] et al. Photonic cristals; putting a new twist on light, Nature, Volume 386 (1997), pp. 143-149
[4] et al. Photonic bandgaps in three dimensions: newlayer-bg-layer periodic structures, Solid State Commun., Volume 89 (1994), pp. 413-416
[5] Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature, Volume 699–702 (1996)
[6] Exploring the two-dimension photonic bandgap in semiconducors (C.M. Soukoulis, ed.), Photonic Band Gap Materials, Kluwer Academic, Dordrecht, 1996, pp. 427-436
[7] Appl. Phys. Lett., 75 (1999), pp. 316-318
[8] Nature, 107 (2000), pp. 608-610
[9] et al. Phys. Rev. Lett., 80 (1998), pp. 960-963
Cité par Sources :
Commentaires - Politique