Comptes Rendus
Physics/Atoms, molecules
Analysis of photonic band gap structure for the design of photonic devices
[Analyse du gap de photons dans des dispositifs photoniques]
Comptes Rendus. Physique, Volume 5 (2004) no. 2, pp. 279-283.

En utilisant le modèle de Kronig–Penney et la méthode des différences finies dans le domaine temporel (DFDT), on analyse les propriétés optiques de cristaux photoniques parfaits. Au moyen du modèle de Kronig–Penney, nous calculons la structure de bande photonique dans un réseau carré de tiges diélectriques à distance a séparées par de l'air. Les structures de bande présentent un gap pour les deux polarisations. Nous analysons l'effet du remplissage pour les basses et les hautes fréquences. On montre que dans les basses fréquences, le bas de bande transverse électrique (TE) est indépendant du facteur de remplissage. Par contre, la fréquence du haut de bande augmente rapidement avec le remplissage en air. Par la méthode DFDT, nous simulons le champ électrique lors de la propagation d'une impulsion à travers la structure. Nous calculons les propriétés optiques d'un défaut unique et d'une paire de défauts incorporés dans le cristal photonique.

A detailed analysis, based on Kronig–Penney model and finite-difference time-domain (FDTD) method, is used to explain the air-filling factor effect on the optical properties of defect-free photonic crystals. By the use of the Kronig–Penney model, we calculated the photonic band structure for electromagnetic waves in a structure consisting of a periodic square array of dielectric rods of lattice constant a separated by air holes. Gaps in the resulting band structures are found for waves of both polarisations. We analysed the air-filling factor effect on both polarisations in low and high frequency regions. It is shown that the frequency of the lower TE (transverse-electric) band edge is independent of the air-filling factor in the low frequency region. The opposite behaviour holds for the upper band edge, growing rapidly with the air-filling factor. Using the FDTD we simulated the electric field as the pulse propagates through the structure. The results of both approaches are compared, and the operation characteristics of the measuring air-filling factor device are described. We investigate the optical properties of a single and two defects incorporated in the PC, which can be potentially applied to ultra small surface-emitting-type channel drop filter. It is shown that the frequency and polarisation of the dropped light can be controlled by changing the size and/or shape of the defect. The electric field distribution calculations show that the electric field for a given frequency is located only at the defect, which means that each defect can detect only its corresponding wavelength.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crhy.2004.01.024
Keywords: Photonic band structure, Kronig–Penney model
Mot clés : Structure de bande photonique, Modèle de Kronig–Penney

F. Ouerghi 1, 2 ; W. Aroua 1, 2 ; F. Abdel Malek 2 ; H. Mejatty 1 ; H. Bouchriha 1

1 Laboratoire de physique de la matière condensée, faculté des sciences de Tunis, 2092 ElManar, Tunis, Tunisia
2 Institut national des sciences appliquées et de technologie, BP 676 cedex, 1080 Tunis, Tunisia
@article{CRPHYS_2004__5_2_279_0,
     author = {F. Ouerghi and W. Aroua and F. Abdel Malek and H. Mejatty and H. Bouchriha},
     title = {Analysis of photonic band gap structure for the design of photonic devices},
     journal = {Comptes Rendus. Physique},
     pages = {279--283},
     publisher = {Elsevier},
     volume = {5},
     number = {2},
     year = {2004},
     doi = {10.1016/j.crhy.2004.01.024},
     language = {en},
}
TY  - JOUR
AU  - F. Ouerghi
AU  - W. Aroua
AU  - F. Abdel Malek
AU  - H. Mejatty
AU  - H. Bouchriha
TI  - Analysis of photonic band gap structure for the design of photonic devices
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 279
EP  - 283
VL  - 5
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.01.024
LA  - en
ID  - CRPHYS_2004__5_2_279_0
ER  - 
%0 Journal Article
%A F. Ouerghi
%A W. Aroua
%A F. Abdel Malek
%A H. Mejatty
%A H. Bouchriha
%T Analysis of photonic band gap structure for the design of photonic devices
%J Comptes Rendus. Physique
%D 2004
%P 279-283
%V 5
%N 2
%I Elsevier
%R 10.1016/j.crhy.2004.01.024
%G en
%F CRPHYS_2004__5_2_279_0
F. Ouerghi; W. Aroua; F. Abdel Malek; H. Mejatty; H. Bouchriha. Analysis of photonic band gap structure for the design of photonic devices. Comptes Rendus. Physique, Volume 5 (2004) no. 2, pp. 279-283. doi : 10.1016/j.crhy.2004.01.024. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.01.024/

[1] J.D. Joannopoulous; R.D. Meade; J.N. Winn Photonic Crystals, Modeling the Flow of Light, Princeton University Press, Princeton, NJ, 1995

[2] S.Y. Lin et al. Experimental demonstration of guiding ant bending electromagnetic waves in a photonic crystal, Science, Volume 282 (1998), pp. 247-277

[3] J.D. Joannopoulos et al. Photonic cristals; putting a new twist on light, Nature, Volume 386 (1997), pp. 143-149

[4] K.M. Ho et al. Photonic bandgaps in three dimensions: newlayer-bg-layer periodic structures, Solid State Commun., Volume 89 (1994), pp. 413-416

[5] T.F. Krauss; R.M. De La Rue; S. Brand Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature, Volume 699–702 (1996)

[6] T.F. Krauss; R.M. De La Rue Exploring the two-dimension photonic bandgap in semiconducors (C.M. Soukoulis, ed.), Photonic Band Gap Materials, Kluwer Academic, Dordrecht, 1996, pp. 427-436

[7] M. Imada; S. Noda; A. Chutinan; T. Tokuda; M. Murata; M. Sasaki Appl. Phys. Lett., 75 (1999), pp. 316-318

[8] S. Noda; A. Chutinan; M. Imada Nature, 107 (2000), pp. 608-610

[9] S. Fan et al. Phys. Rev. Lett., 80 (1998), pp. 960-963

Cité par Sources :

Commentaires - Politique