Comptes Rendus
Multiphase flows in microfluidics
[Écoulements de fluides non miscibles dans des systèmes microfluidiques]
Comptes Rendus. Physique, Volume 5 (2004) no. 5, pp. 547-555.

Nous présentons ici quelques aspects d'écoulements de fluides non miscibles dans des systèmes microfluidiques. On rappelle les caractéristiques physiques fondamentales, on montre que les propriétés de mouillage des fluides sur les surfaces ainsi que les propriétés de tension superficielle sont déterminantes pour les écoulements. On présentera quelques applications de ces écoulements telle la formation de microbulles, de gouttes. On évoquera quelques applications tels les transferts thermiques, ou le transport de colloı̈des ou d'émulsions.

Various aspects of microfluidic flows with different immiscible constituents are addressed. The fundamental physical characteristics are proposed, as well as the flow regimes which are determined by the wetting and surface tension properties. These fundamental aspects are followed by engineering applications that emerge in microfluidics, namely the creation of microbubbles or drops. Further applications are also discussed, such as the transfer of heat in bubbly flows, or the transport of colloids and emulsions.

Publié le :
DOI : 10.1016/j.crhy.2004.04.006
Keywords: Microfluidic flow, Wetting properties, Surface tension properties, Microbubbles
Mot clés : Écoulement microfluidique, Mouillage, Tension superficielle, Microbulles
Charles N. Baroud 1 ; Hervé Willaime 2

1 LadHyX, École Polytechnique, 91128 Palaiseau cedex, France
2 Laboratoire MMN, ESPCI, 10, rue Vauquelin, 75005 Paris, France
@article{CRPHYS_2004__5_5_547_0,
     author = {Charles N. Baroud and Herv\'e Willaime},
     title = {Multiphase flows in microfluidics},
     journal = {Comptes Rendus. Physique},
     pages = {547--555},
     publisher = {Elsevier},
     volume = {5},
     number = {5},
     year = {2004},
     doi = {10.1016/j.crhy.2004.04.006},
     language = {en},
}
TY  - JOUR
AU  - Charles N. Baroud
AU  - Hervé Willaime
TI  - Multiphase flows in microfluidics
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 547
EP  - 555
VL  - 5
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.04.006
LA  - en
ID  - CRPHYS_2004__5_5_547_0
ER  - 
%0 Journal Article
%A Charles N. Baroud
%A Hervé Willaime
%T Multiphase flows in microfluidics
%J Comptes Rendus. Physique
%D 2004
%P 547-555
%V 5
%N 5
%I Elsevier
%R 10.1016/j.crhy.2004.04.006
%G en
%F CRPHYS_2004__5_5_547_0
Charles N. Baroud; Hervé Willaime. Multiphase flows in microfluidics. Comptes Rendus. Physique, Volume 5 (2004) no. 5, pp. 547-555. doi : 10.1016/j.crhy.2004.04.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.04.006/

[1] W. Olbricht Pore-scale prototypes of multiphase flow in porous media, Annu. Rev. Fluid Mech., Volume 28 (1996), pp. 187-213

[2] S. Vanhook; M. Schatz; J. Swift; W. McCormick; H. Swinney Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech., Volume 345 (1997), pp. 45-78

[3] P.-G. de Gennes; F. Brochard-Wyart; D. Quéré Gouttes, bulles, perles et ondes, Echelles, Belin, Paris, 2002

[4] W. Zisman Contact Angle Wettability and Adhesion, Adv. Chem. Ser., vol. 43, American Chemical Society, Washington, DC, 1964

[5] S. Quake; A. Scherer From micro- to nano-fabrication with soft materials, Science, Volume 290 (2000), pp. 1536-1540

[6] K. Efimenko; W. Wallace; J. Genzer Surface modification of sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultravioletozone treatment, J. Colloid Interface Sci., Volume 254 (2002), pp. 306-315

[7] J. Brzoska; J. Ben Azouz; F. Rondelez Silanization of solid substrates: a step toward reproducibility, Langmuir, Volume 10 (1994), pp. 4367-4373

[8] T. Nisisako; T. Torii; T. Higuchi Preparation of picoliter-sized reaction/analysis chambers for droplet-based chemical and biochemical systems, Micro Total Analysis Systems 2002, 2002, pp. 362-364

[9] J. Tice; H. Song; A. Lyon; R. Ismagilov Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir, Volume 19 (2003), pp. 9127-9133

[10] R. Dreyfus; P. Tabeling; H. Willaime Ordered and discordered patterns in two phase flows in microchannels, Phys. Rev. Lett., Volume 90 (2003), p. 144505

[11] J. Knight; A. Vishwanath; J. Brody; R. Austin Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds, Phys. Rev. Lett., Volume 80 (1998), pp. 3863-3866

[12] A. Liu; D. Durian; E. Hesbolzheimer; S. Safran Wetting transitions in a cylindrical pore, Phys. Rev. Lett., Volume 65 (1990) no. 15, pp. 1897-1900

[13] H. Tanaka Dynamic interplay between phase separation and wetting in a binary mixture confined in a one-dimensional capillary, Phys. Rev. Lett., Volume 70 (1993) no. 1, pp. 53-56

[14] N. de Mas; R. Jackman; M. Schmidt; K. Jensen Microchemical systems for direct fluorination of aromatics, Fifth International Conference on Microreaction Technology (IMRET5), 2001

[15] K. Triplett; S. Ghiaassiaan; S. Abdel-Khalik; D. Sadowski Gas–liquid two-phase flow in microchannels. Part i: two-phase flow patterns, Int. J. Multiphase Flow, Volume 25 (1999), pp. 377-394

[16] A. Günter; M. Jhunjhunwala; N. de Mas; M. Schmidt; K. Jensen Gas–liquid flows in microchemical systems, Micro Total Analysis Systems, vol. 1, 2002, pp. 353-355

[17] J. Eggers Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., Volume 69 (1997) no. 3, pp. 865-929

[18] A. Gañán Calvo Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams, Phys. Rev. Lett., Volume 80 (1998) no. 2, pp. 285-288

[19] A. Gañán Calvo; J. Cordillo Perfectly monodisperse microbubbling by capillary flow focusing, Phys. Rev. Lett., Volume 87 (2001) no. 27, p. 274501

[20] S. Anna; N. Bontoux; H. Stone Formation of dispersions using ‘flow-focusing’ in microchannels, Appl. Phys. Lett., Volume 82 (2003) no. 3, pp. 364-366

[21] T. Thorsen; R. Roberts; F. Arnold; S. Quake Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett., Volume 86 (2001) no. 18, pp. 4163-4166

[22] Y. Tan; K. Longmuir; A. Lee Microfluidic liposome generation from monodisperse droplet emulsion – towards the realization of artificial cells, 2003 Summer Bioengineering Conference, 2003, pp. 603-604

[23] G.-R. Yi; S.-J. Jeon; T. Thorsen; S.R. Manoharan; V.N. Quake; D.J. Pine; S.-M. Yang Generation of uniform photonic balls by template-assisted colloidal crystallization, Synthetic Metals, Volume 139 (2003) no. 3, pp. 803-806

[24] P. Umbanhowar; V. Prasad; D. Weitz Monodisperse emulsion generation via drop break off in a coflowing stream, Langmuir, Volume 16 (2000), pp. 347-351

[25] M. Debar; D. Liepmann Fabrication and performance testing of a steady thermocapillary pump with no moving parts, Proceedings of the MEMS 2002 IEEE International Conference, IEEE, 2002, pp. 109-112

[26] A. Darhuber; J. Valentino; J. Davis; S. Troian; S. Wagner Microfluidic actuation by modulation of surface stresses, Appl. Phys. Lett., Volume 82 (2003) no. 4, pp. 657-659

[27] E. Ory; H. Yuan; A. Prosperetti; S. Popinet; S. Zaleski Growth and collapse of a vapor bubble in a narrow tube, Phys. Fluids, Volume 12 (2000) no. 6, pp. 1268-1277

[28] F. Tseng; C.-J. Kim; C.-M. Ho ASME Int. Mech. Eng. Congress and Exposition, Anaheim, 1988, pp. 89-95

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Droplets and jets in microfluidic devices

Pierre Guillot; Armand Ajdari; Julie Goyon; ...

C. R. Chim (2009)


High-throughput photocontrol of water drop generation, fusion, and mixing in a dual flow-focusing microfluidic device

Lucie Nurdin; Anna Venancio-Marques; Sergii Rudiuk; ...

C. R. Chim (2016)