[Écoulements de fluides non miscibles dans des systèmes microfluidiques]
Nous présentons ici quelques aspects d'écoulements de fluides non miscibles dans des systèmes microfluidiques. On rappelle les caractéristiques physiques fondamentales, on montre que les propriétés de mouillage des fluides sur les surfaces ainsi que les propriétés de tension superficielle sont déterminantes pour les écoulements. On présentera quelques applications de ces écoulements telle la formation de microbulles, de gouttes. On évoquera quelques applications tels les transferts thermiques, ou le transport de colloı̈des ou d'émulsions.
Various aspects of microfluidic flows with different immiscible constituents are addressed. The fundamental physical characteristics are proposed, as well as the flow regimes which are determined by the wetting and surface tension properties. These fundamental aspects are followed by engineering applications that emerge in microfluidics, namely the creation of microbubbles or drops. Further applications are also discussed, such as the transfer of heat in bubbly flows, or the transport of colloids and emulsions.
Mot clés : Écoulement microfluidique, Mouillage, Tension superficielle, Microbulles
Charles N. Baroud 1 ; Hervé Willaime 2
@article{CRPHYS_2004__5_5_547_0, author = {Charles N. Baroud and Herv\'e Willaime}, title = {Multiphase flows in microfluidics}, journal = {Comptes Rendus. Physique}, pages = {547--555}, publisher = {Elsevier}, volume = {5}, number = {5}, year = {2004}, doi = {10.1016/j.crhy.2004.04.006}, language = {en}, }
Charles N. Baroud; Hervé Willaime. Multiphase flows in microfluidics. Comptes Rendus. Physique, Volume 5 (2004) no. 5, pp. 547-555. doi : 10.1016/j.crhy.2004.04.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.04.006/
[1] Pore-scale prototypes of multiphase flow in porous media, Annu. Rev. Fluid Mech., Volume 28 (1996), pp. 187-213
[2] Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech., Volume 345 (1997), pp. 45-78
[3] Gouttes, bulles, perles et ondes, Echelles, Belin, Paris, 2002
[4] Contact Angle Wettability and Adhesion, Adv. Chem. Ser., vol. 43, American Chemical Society, Washington, DC, 1964
[5] From micro- to nano-fabrication with soft materials, Science, Volume 290 (2000), pp. 1536-1540
[6] Surface modification of sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultravioletozone treatment, J. Colloid Interface Sci., Volume 254 (2002), pp. 306-315
[7] Silanization of solid substrates: a step toward reproducibility, Langmuir, Volume 10 (1994), pp. 4367-4373
[8] Preparation of picoliter-sized reaction/analysis chambers for droplet-based chemical and biochemical systems, Micro Total Analysis Systems 2002, 2002, pp. 362-364
[9] Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir, Volume 19 (2003), pp. 9127-9133
[10] Ordered and discordered patterns in two phase flows in microchannels, Phys. Rev. Lett., Volume 90 (2003), p. 144505
[11] Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds, Phys. Rev. Lett., Volume 80 (1998), pp. 3863-3866
[12] Wetting transitions in a cylindrical pore, Phys. Rev. Lett., Volume 65 (1990) no. 15, pp. 1897-1900
[13] Dynamic interplay between phase separation and wetting in a binary mixture confined in a one-dimensional capillary, Phys. Rev. Lett., Volume 70 (1993) no. 1, pp. 53-56
[14] Microchemical systems for direct fluorination of aromatics, Fifth International Conference on Microreaction Technology (IMRET5), 2001
[15] Gas–liquid two-phase flow in microchannels. Part i: two-phase flow patterns, Int. J. Multiphase Flow, Volume 25 (1999), pp. 377-394
[16] Gas–liquid flows in microchemical systems, Micro Total Analysis Systems, vol. 1, 2002, pp. 353-355
[17] Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., Volume 69 (1997) no. 3, pp. 865-929
[18] Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams, Phys. Rev. Lett., Volume 80 (1998) no. 2, pp. 285-288
[19] Perfectly monodisperse microbubbling by capillary flow focusing, Phys. Rev. Lett., Volume 87 (2001) no. 27, p. 274501
[20] Formation of dispersions using ‘flow-focusing’ in microchannels, Appl. Phys. Lett., Volume 82 (2003) no. 3, pp. 364-366
[21] Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett., Volume 86 (2001) no. 18, pp. 4163-4166
[22] Microfluidic liposome generation from monodisperse droplet emulsion – towards the realization of artificial cells, 2003 Summer Bioengineering Conference, 2003, pp. 603-604
[23] Generation of uniform photonic balls by template-assisted colloidal crystallization, Synthetic Metals, Volume 139 (2003) no. 3, pp. 803-806
[24] Monodisperse emulsion generation via drop break off in a coflowing stream, Langmuir, Volume 16 (2000), pp. 347-351
[25] Fabrication and performance testing of a steady thermocapillary pump with no moving parts, Proceedings of the MEMS 2002 IEEE International Conference, IEEE, 2002, pp. 109-112
[26] Microfluidic actuation by modulation of surface stresses, Appl. Phys. Lett., Volume 82 (2003) no. 4, pp. 657-659
[27] Growth and collapse of a vapor bubble in a narrow tube, Phys. Fluids, Volume 12 (2000) no. 6, pp. 1268-1277
[28] ASME Int. Mech. Eng. Congress and Exposition, Anaheim, 1988, pp. 89-95
Cité par Sources :
Commentaires - Politique