Comptes Rendus
Multiphase flows in microfluidics
[Écoulements de fluides non miscibles dans des systèmes microfluidiques]
Comptes Rendus. Physique, Microfluidics, Volume 5 (2004) no. 5, pp. 547-555.

Various aspects of microfluidic flows with different immiscible constituents are addressed. The fundamental physical characteristics are proposed, as well as the flow regimes which are determined by the wetting and surface tension properties. These fundamental aspects are followed by engineering applications that emerge in microfluidics, namely the creation of microbubbles or drops. Further applications are also discussed, such as the transfer of heat in bubbly flows, or the transport of colloids and emulsions.

Nous présentons ici quelques aspects d'écoulements de fluides non miscibles dans des systèmes microfluidiques. On rappelle les caractéristiques physiques fondamentales, on montre que les propriétés de mouillage des fluides sur les surfaces ainsi que les propriétés de tension superficielle sont déterminantes pour les écoulements. On présentera quelques applications de ces écoulements telle la formation de microbulles, de gouttes. On évoquera quelques applications tels les transferts thermiques, ou le transport de colloı̈des ou d'émulsions.

Publié le :
DOI : 10.1016/j.crhy.2004.04.006
Keywords: Microfluidic flow, Wetting properties, Surface tension properties, Microbubbles
Mots-clés : Écoulement microfluidique, Mouillage, Tension superficielle, Microbulles

Charles N. Baroud 1 ; Hervé Willaime 2

1 LadHyX, École Polytechnique, 91128 Palaiseau cedex, France
2 Laboratoire MMN, ESPCI, 10, rue Vauquelin, 75005 Paris, France
@article{CRPHYS_2004__5_5_547_0,
     author = {Charles N. Baroud and Herv\'e Willaime},
     title = {Multiphase flows in microfluidics},
     journal = {Comptes Rendus. Physique},
     pages = {547--555},
     publisher = {Elsevier},
     volume = {5},
     number = {5},
     year = {2004},
     doi = {10.1016/j.crhy.2004.04.006},
     language = {en},
}
TY  - JOUR
AU  - Charles N. Baroud
AU  - Hervé Willaime
TI  - Multiphase flows in microfluidics
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 547
EP  - 555
VL  - 5
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.04.006
LA  - en
ID  - CRPHYS_2004__5_5_547_0
ER  - 
%0 Journal Article
%A Charles N. Baroud
%A Hervé Willaime
%T Multiphase flows in microfluidics
%J Comptes Rendus. Physique
%D 2004
%P 547-555
%V 5
%N 5
%I Elsevier
%R 10.1016/j.crhy.2004.04.006
%G en
%F CRPHYS_2004__5_5_547_0
Charles N. Baroud; Hervé Willaime. Multiphase flows in microfluidics. Comptes Rendus. Physique, Microfluidics, Volume 5 (2004) no. 5, pp. 547-555. doi : 10.1016/j.crhy.2004.04.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.04.006/

[1] W. Olbricht Pore-scale prototypes of multiphase flow in porous media, Annu. Rev. Fluid Mech., Volume 28 (1996), pp. 187-213

[2] S. Vanhook; M. Schatz; J. Swift; W. McCormick; H. Swinney Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech., Volume 345 (1997), pp. 45-78

[3] P.-G. de Gennes; F. Brochard-Wyart; D. Quéré Gouttes, bulles, perles et ondes, Echelles, Belin, Paris, 2002

[4] W. Zisman Contact Angle Wettability and Adhesion, Adv. Chem. Ser., vol. 43, American Chemical Society, Washington, DC, 1964

[5] S. Quake; A. Scherer From micro- to nano-fabrication with soft materials, Science, Volume 290 (2000), pp. 1536-1540

[6] K. Efimenko; W. Wallace; J. Genzer Surface modification of sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultravioletozone treatment, J. Colloid Interface Sci., Volume 254 (2002), pp. 306-315

[7] J. Brzoska; J. Ben Azouz; F. Rondelez Silanization of solid substrates: a step toward reproducibility, Langmuir, Volume 10 (1994), pp. 4367-4373

[8] T. Nisisako; T. Torii; T. Higuchi Preparation of picoliter-sized reaction/analysis chambers for droplet-based chemical and biochemical systems, Micro Total Analysis Systems 2002, 2002, pp. 362-364

[9] J. Tice; H. Song; A. Lyon; R. Ismagilov Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir, Volume 19 (2003), pp. 9127-9133

[10] R. Dreyfus; P. Tabeling; H. Willaime Ordered and discordered patterns in two phase flows in microchannels, Phys. Rev. Lett., Volume 90 (2003), p. 144505

[11] J. Knight; A. Vishwanath; J. Brody; R. Austin Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds, Phys. Rev. Lett., Volume 80 (1998), pp. 3863-3866

[12] A. Liu; D. Durian; E. Hesbolzheimer; S. Safran Wetting transitions in a cylindrical pore, Phys. Rev. Lett., Volume 65 (1990) no. 15, pp. 1897-1900

[13] H. Tanaka Dynamic interplay between phase separation and wetting in a binary mixture confined in a one-dimensional capillary, Phys. Rev. Lett., Volume 70 (1993) no. 1, pp. 53-56

[14] N. de Mas; R. Jackman; M. Schmidt; K. Jensen Microchemical systems for direct fluorination of aromatics, Fifth International Conference on Microreaction Technology (IMRET5), 2001

[15] K. Triplett; S. Ghiaassiaan; S. Abdel-Khalik; D. Sadowski Gas–liquid two-phase flow in microchannels. Part i: two-phase flow patterns, Int. J. Multiphase Flow, Volume 25 (1999), pp. 377-394

[16] A. Günter; M. Jhunjhunwala; N. de Mas; M. Schmidt; K. Jensen Gas–liquid flows in microchemical systems, Micro Total Analysis Systems, vol. 1, 2002, pp. 353-355

[17] J. Eggers Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., Volume 69 (1997) no. 3, pp. 865-929

[18] A. Gañán Calvo Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams, Phys. Rev. Lett., Volume 80 (1998) no. 2, pp. 285-288

[19] A. Gañán Calvo; J. Cordillo Perfectly monodisperse microbubbling by capillary flow focusing, Phys. Rev. Lett., Volume 87 (2001) no. 27, p. 274501

[20] S. Anna; N. Bontoux; H. Stone Formation of dispersions using ‘flow-focusing’ in microchannels, Appl. Phys. Lett., Volume 82 (2003) no. 3, pp. 364-366

[21] T. Thorsen; R. Roberts; F. Arnold; S. Quake Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett., Volume 86 (2001) no. 18, pp. 4163-4166

[22] Y. Tan; K. Longmuir; A. Lee Microfluidic liposome generation from monodisperse droplet emulsion – towards the realization of artificial cells, 2003 Summer Bioengineering Conference, 2003, pp. 603-604

[23] G.-R. Yi; S.-J. Jeon; T. Thorsen; S.R. Manoharan; V.N. Quake; D.J. Pine; S.-M. Yang Generation of uniform photonic balls by template-assisted colloidal crystallization, Synthetic Metals, Volume 139 (2003) no. 3, pp. 803-806

[24] P. Umbanhowar; V. Prasad; D. Weitz Monodisperse emulsion generation via drop break off in a coflowing stream, Langmuir, Volume 16 (2000), pp. 347-351

[25] M. Debar; D. Liepmann Fabrication and performance testing of a steady thermocapillary pump with no moving parts, Proceedings of the MEMS 2002 IEEE International Conference, IEEE, 2002, pp. 109-112

[26] A. Darhuber; J. Valentino; J. Davis; S. Troian; S. Wagner Microfluidic actuation by modulation of surface stresses, Appl. Phys. Lett., Volume 82 (2003) no. 4, pp. 657-659

[27] E. Ory; H. Yuan; A. Prosperetti; S. Popinet; S. Zaleski Growth and collapse of a vapor bubble in a narrow tube, Phys. Fluids, Volume 12 (2000) no. 6, pp. 1268-1277

[28] F. Tseng; C.-J. Kim; C.-M. Ho ASME Int. Mech. Eng. Congress and Exposition, Anaheim, 1988, pp. 89-95

  • Swati Namdev; Nidhi Gautam; Ritu Ranjani Singh; Rajiv Raghuwanshi; Sanjeev Gaur; Poornima Dwivedi, 2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0 (2025), p. 1 | DOI:10.1109/otcon65728.2025.11070940
  • Naresh Yandrapalli Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges, Pharmaceutics, Volume 16 (2024) no. 6, p. 707 | DOI:10.3390/pharmaceutics16060707
  • Guang-yao Li; Liang-tong Zhan; Yun-min Chen; Song Feng; Zhi-hong Zhang; Xiu-li Du Effects of flow rate and pore size variability on capillary barrier effects: a microfluidic investigation, Canadian Geotechnical Journal, Volume 60 (2023) no. 6, p. 902 | DOI:10.1139/cgj-2022-0298
  • Sahil Kashyap; Zeyad Almutairi; Ning Qin; Pei Zhao; Sanjeev Bedi; David Johnson; Carolyn L. Ren Effects of surfactant size and concentration on the internal flow fields of moving slug and Disk-like droplets via μ-PIV, Chemical Engineering Science, Volume 255 (2022), p. 117668 | DOI:10.1016/j.ces.2022.117668
  • A.I. Moreira; J.B.L.M. Campos; J.M. Miranda Characterization of gelatin microparticle production in a flow focusing microfluidic system, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 647 (2022), p. 129079 | DOI:10.1016/j.colsurfa.2022.129079
  • Yuya Murakami; Keita Inoue; Ryunosuke Akiyama; Yasuhiko Orita; Yusuke Shimoyama LipTube: Liposome Formation in the Tube Process Using Supercritical CO2, Industrial Engineering Chemistry Research, Volume 61 (2022) no. 39, p. 14598 | DOI:10.1021/acs.iecr.2c02095
  • Mohammad R. Hashemi; Pavel B. Ryzhakov; Riccardo Rossi Three dimensional modeling of liquid droplet spreading on solid surface: An enriched finite element/level-set approach, Journal of Computational Physics, Volume 442 (2021), p. 110480 | DOI:10.1016/j.jcp.2021.110480
  • Thai Dinh; Thomas Cubaud Role of Interfacial Tension on Viscous Multiphase Flows in Coaxial Microfluidic Channels, Langmuir, Volume 37 (2021) no. 24, p. 7420 | DOI:10.1021/acs.langmuir.1c00782
  • A. Moreira; J. Carneiro; J. B. L. M. Campos; J. M. Miranda Production of hydrogel microparticles in microfluidic devices: a review, Microfluidics and Nanofluidics, Volume 25 (2021) no. 2 | DOI:10.1007/s10404-020-02413-8
  • Xiaoxi Yu; Yining Wu; Yuan Li; Zhi Yang; Youguang Ma The formation of satellite droplets in micro-devices due to the rupture of neck filament, Chemical Engineering Research and Design, Volume 153 (2020), p. 435 | DOI:10.1016/j.cherd.2019.11.016
  • Jesús F. Ontiveros; Roberto Company; Mike Ortega Vaz; Véronique Nardello-Rataj Microfluidic emulsification: Process and formulation variables effects in flow behavior pattern on a flow-focusing device, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 601 (2020), p. 125038 | DOI:10.1016/j.colsurfa.2020.125038
  • Ali Eslami; Raunak Basak; Seyed Mohammad Taghavi Multiphase Viscoplastic Flows in a Nonuniform Hele-Shaw Cell: A Fluidic Device to Control Interfacial Patterns, Industrial Engineering Chemistry Research, Volume 59 (2020) no. 9, p. 4119 | DOI:10.1021/acs.iecr.9b06064
  • References, Process Engineering Renewal 2 (2020), p. 223 | DOI:10.1002/9781119751229.refs
  • Zifei Yan; Chencan Du; Yuchao Chen; Guangsheng Luo A Novel Hollow-Fiber Membrane Embedded Co-axial Microdevice for Simultaneous Extraction and Stripping, Solvent Extraction and Ion Exchange, Volume 38 (2020) no. 1, p. 103 | DOI:10.1080/07366299.2019.1691301
  • Yuan He; Shenghui Guo; Kaihua Chen; Shiwei Li; Libo Zhang; Shaohua Yin Sustainable Green Production: A Review of Recent Development on Rare Earths Extraction and Separation Using Microreactors, ACS Sustainable Chemistry Engineering, Volume 7 (2019) no. 21, p. 17616 | DOI:10.1021/acssuschemeng.9b03384
  • Elisenda Fornells; Emily F. Hilder; Michael C. Breadmore Preconcentration by solvent removal: techniques and applications, Analytical and Bioanalytical Chemistry, Volume 411 (2019) no. 9, p. 1715 | DOI:10.1007/s00216-018-1530-8
  • Evgeny Rebrov Development of Novel Multiphase Microreactors: Recent Developments and Future Challenges, Handbook of Green Chemistry (2019), p. 115 | DOI:10.1002/9783527628698.hgc138
  • Mahsa Moezzi; Siamak Kazemzadeh Hannani; Bijan Farhanieh Hysteretic heat transfer study of liquid–liquid two-phase flow in a T-junction microchannel, International Journal of Heat and Fluid Flow, Volume 77 (2019), p. 366 | DOI:10.1016/j.ijheatfluidflow.2019.05.008
  • Florian Noël; Christophe A. Serra; Stéphane Le Calvé Design of a Novel Axial Gas Pulses Micromixer and Simulations of its Mixing Abilities via Computational Fluid Dynamics, Micromachines, Volume 10 (2019) no. 3, p. 205 | DOI:10.3390/mi10030205
  • Giovana Bonat Celli; Alireza Abbaspourrad Tailoring Delivery System Functionality Using Microfluidics, Annual Review of Food Science and Technology, Volume 9 (2018) no. 1, p. 481 | DOI:10.1146/annurev-food-030117-012545
  • S. Arias; A. Montlaur Influence of Contact Angle Boundary Condition on CFD Simulation of T-Junction, Microgravity Science and Technology, Volume 30 (2018) no. 4, p. 435 | DOI:10.1007/s12217-018-9605-x
  • µ‐Fluidics (or Microfluidics), From Additive Manufacturing to 3D/4D Printing 2 (2017), p. 81 | DOI:10.1002/9781119428299.ch2
  • S. Arias; R. González-Cinca Analysis of the characteristic lengths in the bubble and slug flow regimes generated in a capillary T-junction, International Journal of Multiphase Flow, Volume 87 (2016), p. 167 | DOI:10.1016/j.ijmultiphaseflow.2016.09.011
  • Surface Tension‐Dominated Flows, Transport Phenomena in Microfluidic Systems (2016), p. 149 | DOI:10.1002/9781118298428.ch5
  • Jaydeep B. Deshpande; Amol A. Kulkarni Effect of interfacial mass transfer on the dispersion in segmented flow in straight capillaries, AIChE Journal, Volume 61 (2015) no. 12, p. 4294 | DOI:10.1002/aic.14945
  • F. Y. Ushikubo; D. R. B. Oliveira; M. Michelon; R. L. Cunha Designing Food Structure Using Microfluidics, Food Engineering Reviews, Volume 7 (2015) no. 4, p. 393 | DOI:10.1007/s12393-014-9100-0
  • Ke Xu; Jian-hong Xu; Yang-cheng Lu; Guang-Sheng Luo A Novel Method of Fabricating, Adjusting, and Optimizing Polystyrene Colloidal Crystal Nonspherical Microparticles from Gas–Water Janus Droplets in a Double Coaxial Microfluidic Device, Crystal Growth Design, Volume 14 (2014) no. 2, p. 401 | DOI:10.1021/cg401653b
  • Jeffrey D. Zahn Interfacial Instability, Encyclopedia of Microfluidics and Nanofluidics (2014), p. 1 | DOI:10.1007/978-3-642-27758-0_724-2
  • Anupam Sengupta; Stephan Herminghaus; Christian Bahr Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales, Liquid Crystals Reviews, Volume 2 (2014) no. 2, p. 73 | DOI:10.1080/21680396.2014.963716
  • Wan Shi Low; Nahrizul Adib Kadri; Wan Abu Bakar bin Wan Abas Computational Fluid Dynamics Modelling of Microfluidic Channel for Dielectrophoretic BioMEMS Application, The Scientific World Journal, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/961301
  • Chun-Xia Zhao Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery, Advanced Drug Delivery Reviews, Volume 65 (2013) no. 11-12, p. 1420 | DOI:10.1016/j.addr.2013.05.009
  • Stefania Mazzitelli; Lorenzo Capretto; Federico Quinci; Roberta Piva; Claudio Nastruzzi Preparation of cell-encapsulation devices in confined microenvironment, Advanced Drug Delivery Reviews, Volume 65 (2013) no. 11-12, p. 1533 | DOI:10.1016/j.addr.2013.07.021
  • Matthew J. Hutchings; Batool Ahmed‐Omer; Thomas Wirth Liquid–Liquid Biphasic Reactions, Microreactors in Organic Chemistry and Catalysis (2013), p. 197 | DOI:10.1002/9783527659722.ch8
  • Matthias Budden; Steffen Schneider; G. Alexander Groß; Mark Kielpinski; Thomas Henkel; Brian Cahill; J. Michael Köhler Microfluidic encoding: Generation of arbitrary droplet sequences by electrical switching in microchannels, Sensors and Actuators A: Physical, Volume 189 (2013), p. 288 | DOI:10.1016/j.sna.2012.10.013
  • Cyrille Lenders Surface Tension Effects in Presence of Gas Compliance, Surface Tension in Microsystems (2013), p. 93 | DOI:10.1007/978-3-642-37552-1_5
  • Yanneck Wielhorski; Amine Ben Abdelwahed; Joël Bréard Theoretical Approach of Bubble Entrapment Through Interconnected Pores: Supplying Principle, Transport in Porous Media, Volume 96 (2013) no. 1, p. 105 | DOI:10.1007/s11242-012-0076-z
  • Mohamed Amine Ben Abdelwahed; Yanneck Wielhorski; Laurent Bizet; Joël Bréard Characterisation of bubbles formed in a cylindrical T-shaped junction device, Chemical Engineering Science, Volume 76 (2012), p. 206 | DOI:10.1016/j.ces.2012.04.025
  • Charlotte Wiles; Paul Watts Continuous flow reactors: a perspective, Green Chem., Volume 14 (2012) no. 1, p. 38 | DOI:10.1039/c1gc16022b
  • Lorenzo Capretto; Stefania Mazzitelli; Claudio Nastruzzi Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device, Journal of Controlled Release, Volume 160 (2012) no. 3, p. 409 | DOI:10.1016/j.jconrel.2012.04.019
  • J. Michael Köhler; Anette Funfak; Jialan Cao; Dana Kürsten; Steffen Schneider; P. Mike Günther Addressing of Concentration Spaces for Bioscreenings by Micro Segmented Flow with Microphotometric and Microfluorimetric Detection, Optical Nano- and Microsystems for Bioanalytics, Volume 10 (2012), p. 47 | DOI:10.1007/978-3-642-25498-7_2
  • Chun-Xia Zhao; Anton P.J. Middelberg Two-phase microfluidic flows, Chemical Engineering Science, Volume 66 (2011) no. 7, p. 1394 | DOI:10.1016/j.ces.2010.08.038
  • Adam R. Abate; Julian Thiele; David A. Weitz One-step formation of multiple emulsions in microfluidics, Lab Chip, Volume 11 (2011) no. 2, p. 253 | DOI:10.1039/c0lc00236d
  • Ruth Cardinaels; Paula Moldenaers Critical conditions and breakup of non-squashed microconfined droplets: effects of fluid viscoelasticity, Microfluidics and Nanofluidics, Volume 10 (2011) no. 6, p. 1153 | DOI:10.1007/s10404-010-0743-8
  • L. Capretto; S. Mazzitelli; G. Luca; C. Nastruzzi Preparation and characterization of polysaccharidic microbeads by a microfluidic technique: Application to the encapsulation of Sertoli cells, Acta Biomaterialia, Volume 6 (2010) no. 2, p. 429 | DOI:10.1016/j.actbio.2009.08.023
  • Samir N. Ghadiali; Hannah L. Dailey Mechanobiology and Finite Element Analysis of Cellular Injury During Microbubble Flows, Cellular and Biomolecular Mechanics and Mechanobiology, Volume 4 (2010), p. 373 | DOI:10.1007/8415_2010_25
  • Jovan Jovanović; Evgeny V. Rebrov; T. A. (Xander) Nijhuis; Volker Hessel; Jaap C. Schouten Phase-Transfer Catalysis in Segmented Flow in a Microchannel: Fluidic Control of Selectivity and Productivity, Industrial Engineering Chemistry Research, Volume 49 (2010) no. 6, p. 2681 | DOI:10.1021/ie9017918
  • L. Capretto; S. Focaroli; X.L. Zhang; S. Mazzitelli; C. Nastruzzi Production of low cost microfluidic chips by a “shrinking” approach: Applications to emulsion and microparticle production, Journal of Controlled Release, Volume 148 (2010) no. 1, p. e26 | DOI:10.1016/j.jconrel.2010.07.038
  • Pontus S. H. Forsberg; Craig Priest; Martin Brinkmann; Rossen Sedev; John Ralston Contact Line Pinning on Microstructured Surfaces for Liquids in the Wenzel State, Langmuir, Volume 26 (2010) no. 2, p. 860 | DOI:10.1021/la902296d
  • Jing Zhang; Bruce J. Balcom Parallel-plate RF resonator imaging of chemical shift resolved capillary flow, Magnetic Resonance Imaging, Volume 28 (2010) no. 6, p. 826 | DOI:10.1016/j.mri.2010.03.033
  • Salah Aljbour; Tomohiko Tagawa; Mohammad Matouq; Hiroshi Yamada Multiphase surfactant-assisted reaction-separation system in a microchannel reactor, Frontiers of Chemical Engineering in China, Volume 3 (2009) no. 1, p. 33 | DOI:10.1007/s11705-009-0108-6
  • Suresh Alapati; Sangmo Kang; Yong Kweon Suh Parallel computation of two-phase flow in a microchannel using the lattice Boltzmann method, Journal of Mechanical Science and Technology, Volume 23 (2009) no. 9, p. 2492 | DOI:10.1007/s12206-009-0422-4
  • Shelly Gulati; Vincent Rouilly; Xize Niu; James Chappell; Richard I. Kitney; Joshua B. Edel; Paul S. Freemont; Andrew J. deMello Opportunities for microfluidic technologies in synthetic biology, Journal of The Royal Society Interface, Volume 6 (2009) no. suppl_4 | DOI:10.1098/rsif.2009.0083.focus
  • Takasi Nisisako Double, Triple and Complex Multilayered Emulsions, Micro Process Engineering (2009), p. 345 | DOI:10.1002/9783527631445.ch38
  • T. Nisisako Microstructured Devices for Preparing Controlled Multiple Emulsions, Chemical Engineering Technology, Volume 31 (2008) no. 8, p. 1091 | DOI:10.1002/ceat.200800119
  • Jeffrey D. Zahn Interfacial Instability, Encyclopedia of Microfluidics and Nanofluidics (2008), p. 866 | DOI:10.1007/978-0-387-48998-8_724
  • Long Wu; Michihisa Tsutahara; Lae Sung Kim; ManYeong Ha Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel, International Journal of Multiphase Flow, Volume 34 (2008) no. 9, p. 852 | DOI:10.1016/j.ijmultiphaseflow.2008.02.009
  • L. Capretto; S. Mazzitelli; A. Tosi; C. Nastruzzi Preparation of microspheres based on alginate/agarose blends by microfluidic technique, Journal of Controlled Release, Volume 132 (2008) no. 3, p. e55 | DOI:10.1016/j.jconrel.2008.09.054
  • Fran G.E. Jones; Robert A.W. Dryfe Hydrodynamic voltammetry at the interface between immiscible electrolyte solutions: Numerical simulation of the voltammetric response, Journal of Electroanalytical Chemistry, Volume 615 (2008) no. 1, p. 25 | DOI:10.1016/j.jelechem.2007.11.021
  • ALBERTO DE LÓZAR; ANNE JUEL; ANDREW L. HAZEL The steady propagation of an air finger into a rectangular tube, Journal of Fluid Mechanics, Volume 614 (2008), p. 173 | DOI:10.1017/s0022112008003455
  • Takasi Nisisako; T. Torii Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles, Lab Chip, Volume 8 (2008) no. 2, p. 287 | DOI:10.1039/b713141k
  • Lorenzo Capretto; Stefania Mazzitelli; Cosimo Balestra; Azzura Tosi; Claudio Nastruzzi Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology, Lab on a Chip, Volume 8 (2008) no. 4, p. 617 | DOI:10.1039/b714876c
  • Elisabeth Rondeau; Justin J. Cooper-White Biopolymer Microparticle and Nanoparticle Formation within a Microfluidic Device, Langmuir, Volume 24 (2008) no. 13, p. 6937 | DOI:10.1021/la703339u
  • Takahide Fukuyama; Md Taifur Rahman; Ilhyong Ryu; Ian R. Baxendale; John J. Hayward; Steve Lanners; Steven V. Ley; Christopher D. Smith; Batoul Ahmed‐Omer; Thomas Wirth; Volker Hessel; Patrick Löb; Holger Löwe; Kaspar Koch; Floris P. J. T. Rutjes; Jan C. M. van Hest Organic Chemistry in Microreactors, Microreactors in Organic Synthesis and Catalysis (2008), p. 59 | DOI:10.1002/9783527622856.ch4
  • Yonggang Zhu; Barbara E. Power Lab-on-a-chip in Vitro Compartmentalization Technologies for Protein Studies, Protein – Protein Interaction, Volume 110 (2008), p. 81 | DOI:10.1007/10_2008_098
  • H. Tavana; A.W. Neumann Recent progress in the determination of solid surface tensions from contact angles, Advances in Colloid and Interface Science, Volume 132 (2007) no. 1, p. 1 | DOI:10.1016/j.cis.2006.11.024
  • Lingling Shui; Jan C.T. Eijkel; Albert van den Berg Multiphase flow in microfluidic systems – Control and applications of droplets and interfaces, Advances in Colloid and Interface Science, Volume 133 (2007) no. 1, p. 35 | DOI:10.1016/j.cis.2007.03.001
  • G F Christopher; S L Anna Microfluidic methods for generating continuous droplet streams, Journal of Physics D: Applied Physics, Volume 40 (2007) no. 19, p. R319 | DOI:10.1088/0022-3727/40/19/r01
  • C. M. Sewatkar; S. Dindorkar; S. Jadhao CFD Analyses and Validation of Multiphase Flow in Micro-Fluidic System, New Trends in Fluid Mechanics Research (2007), p. 647 | DOI:10.1007/978-3-540-75995-9_218
  • Nikolai D. Denkov; Slavka Tcholakova; Konstantin Golemanov; Vivek Subramanian; Alex Lips Foam–wall friction: Effect of air volume fraction for tangentially immobile bubble surface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 282-283 (2006), p. 329 | DOI:10.1016/j.colsurfa.2006.04.028
  • Ruba T Borno; Joseph D Steinmeyer; Michel M Maharbiz Transpiration actuation: the design, fabrication and characterization of biomimetic microactuators driven by the surface tension of water, Journal of Micromechanics and Microengineering, Volume 16 (2006) no. 11, p. 2375 | DOI:10.1088/0960-1317/16/11/018
  • Hong Xiao; Dong Liang; Guanchao Liu; Min Guo; Wanli Xing; Jing Cheng Initial study of two-phase laminar flow extraction chip for sample preparation for gas chromatography, Lab on a Chip, Volume 6 (2006) no. 8, p. 1067 | DOI:10.1039/b600374e
  • Robert A. W. Dryfe Modifying the liquid/liquid interface: pores, particles and deposition, Physical Chemistry Chemical Physics, Volume 8 (2006) no. 16, p. 1869 | DOI:10.1039/b518018j

Cité par 72 documents. Sources : Crossref

Commentaires - Politique