[Écoulements de fluides non miscibles dans des systèmes microfluidiques]
Various aspects of microfluidic flows with different immiscible constituents are addressed. The fundamental physical characteristics are proposed, as well as the flow regimes which are determined by the wetting and surface tension properties. These fundamental aspects are followed by engineering applications that emerge in microfluidics, namely the creation of microbubbles or drops. Further applications are also discussed, such as the transfer of heat in bubbly flows, or the transport of colloids and emulsions.
Nous présentons ici quelques aspects d'écoulements de fluides non miscibles dans des systèmes microfluidiques. On rappelle les caractéristiques physiques fondamentales, on montre que les propriétés de mouillage des fluides sur les surfaces ainsi que les propriétés de tension superficielle sont déterminantes pour les écoulements. On présentera quelques applications de ces écoulements telle la formation de microbulles, de gouttes. On évoquera quelques applications tels les transferts thermiques, ou le transport de colloı̈des ou d'émulsions.
Mots-clés : Écoulement microfluidique, Mouillage, Tension superficielle, Microbulles
Charles N. Baroud 1 ; Hervé Willaime 2
@article{CRPHYS_2004__5_5_547_0, author = {Charles N. Baroud and Herv\'e Willaime}, title = {Multiphase flows in microfluidics}, journal = {Comptes Rendus. Physique}, pages = {547--555}, publisher = {Elsevier}, volume = {5}, number = {5}, year = {2004}, doi = {10.1016/j.crhy.2004.04.006}, language = {en}, }
Charles N. Baroud; Hervé Willaime. Multiphase flows in microfluidics. Comptes Rendus. Physique, Microfluidics, Volume 5 (2004) no. 5, pp. 547-555. doi : 10.1016/j.crhy.2004.04.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.04.006/
[1] Pore-scale prototypes of multiphase flow in porous media, Annu. Rev. Fluid Mech., Volume 28 (1996), pp. 187-213
[2] Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech., Volume 345 (1997), pp. 45-78
[3] Gouttes, bulles, perles et ondes, Echelles, Belin, Paris, 2002
[4] Contact Angle Wettability and Adhesion, Adv. Chem. Ser., vol. 43, American Chemical Society, Washington, DC, 1964
[5] From micro- to nano-fabrication with soft materials, Science, Volume 290 (2000), pp. 1536-1540
[6] Surface modification of sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultravioletozone treatment, J. Colloid Interface Sci., Volume 254 (2002), pp. 306-315
[7] Silanization of solid substrates: a step toward reproducibility, Langmuir, Volume 10 (1994), pp. 4367-4373
[8] Preparation of picoliter-sized reaction/analysis chambers for droplet-based chemical and biochemical systems, Micro Total Analysis Systems 2002, 2002, pp. 362-364
[9] Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir, Volume 19 (2003), pp. 9127-9133
[10] Ordered and discordered patterns in two phase flows in microchannels, Phys. Rev. Lett., Volume 90 (2003), p. 144505
[11] Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds, Phys. Rev. Lett., Volume 80 (1998), pp. 3863-3866
[12] Wetting transitions in a cylindrical pore, Phys. Rev. Lett., Volume 65 (1990) no. 15, pp. 1897-1900
[13] Dynamic interplay between phase separation and wetting in a binary mixture confined in a one-dimensional capillary, Phys. Rev. Lett., Volume 70 (1993) no. 1, pp. 53-56
[14] Microchemical systems for direct fluorination of aromatics, Fifth International Conference on Microreaction Technology (IMRET5), 2001
[15] Gas–liquid two-phase flow in microchannels. Part i: two-phase flow patterns, Int. J. Multiphase Flow, Volume 25 (1999), pp. 377-394
[16] Gas–liquid flows in microchemical systems, Micro Total Analysis Systems, vol. 1, 2002, pp. 353-355
[17] Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., Volume 69 (1997) no. 3, pp. 865-929
[18] Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams, Phys. Rev. Lett., Volume 80 (1998) no. 2, pp. 285-288
[19] Perfectly monodisperse microbubbling by capillary flow focusing, Phys. Rev. Lett., Volume 87 (2001) no. 27, p. 274501
[20] Formation of dispersions using ‘flow-focusing’ in microchannels, Appl. Phys. Lett., Volume 82 (2003) no. 3, pp. 364-366
[21] Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett., Volume 86 (2001) no. 18, pp. 4163-4166
[22] Microfluidic liposome generation from monodisperse droplet emulsion – towards the realization of artificial cells, 2003 Summer Bioengineering Conference, 2003, pp. 603-604
[23] Generation of uniform photonic balls by template-assisted colloidal crystallization, Synthetic Metals, Volume 139 (2003) no. 3, pp. 803-806
[24] Monodisperse emulsion generation via drop break off in a coflowing stream, Langmuir, Volume 16 (2000), pp. 347-351
[25] Fabrication and performance testing of a steady thermocapillary pump with no moving parts, Proceedings of the MEMS 2002 IEEE International Conference, IEEE, 2002, pp. 109-112
[26] Microfluidic actuation by modulation of surface stresses, Appl. Phys. Lett., Volume 82 (2003) no. 4, pp. 657-659
[27] Growth and collapse of a vapor bubble in a narrow tube, Phys. Fluids, Volume 12 (2000) no. 6, pp. 1268-1277
[28] ASME Int. Mech. Eng. Congress and Exposition, Anaheim, 1988, pp. 89-95
- , 2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0 (2025), p. 1 | DOI:10.1109/otcon65728.2025.11070940
- Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges, Pharmaceutics, Volume 16 (2024) no. 6, p. 707 | DOI:10.3390/pharmaceutics16060707
- Effects of flow rate and pore size variability on capillary barrier effects: a microfluidic investigation, Canadian Geotechnical Journal, Volume 60 (2023) no. 6, p. 902 | DOI:10.1139/cgj-2022-0298
- Effects of surfactant size and concentration on the internal flow fields of moving slug and Disk-like droplets via μ-PIV, Chemical Engineering Science, Volume 255 (2022), p. 117668 | DOI:10.1016/j.ces.2022.117668
- Characterization of gelatin microparticle production in a flow focusing microfluidic system, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 647 (2022), p. 129079 | DOI:10.1016/j.colsurfa.2022.129079
- LipTube: Liposome Formation in the Tube Process Using Supercritical CO2, Industrial Engineering Chemistry Research, Volume 61 (2022) no. 39, p. 14598 | DOI:10.1021/acs.iecr.2c02095
- Three dimensional modeling of liquid droplet spreading on solid surface: An enriched finite element/level-set approach, Journal of Computational Physics, Volume 442 (2021), p. 110480 | DOI:10.1016/j.jcp.2021.110480
- Role of Interfacial Tension on Viscous Multiphase Flows in Coaxial Microfluidic Channels, Langmuir, Volume 37 (2021) no. 24, p. 7420 | DOI:10.1021/acs.langmuir.1c00782
- Production of hydrogel microparticles in microfluidic devices: a review, Microfluidics and Nanofluidics, Volume 25 (2021) no. 2 | DOI:10.1007/s10404-020-02413-8
- The formation of satellite droplets in micro-devices due to the rupture of neck filament, Chemical Engineering Research and Design, Volume 153 (2020), p. 435 | DOI:10.1016/j.cherd.2019.11.016
- Microfluidic emulsification: Process and formulation variables effects in flow behavior pattern on a flow-focusing device, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 601 (2020), p. 125038 | DOI:10.1016/j.colsurfa.2020.125038
- Multiphase Viscoplastic Flows in a Nonuniform Hele-Shaw Cell: A Fluidic Device to Control Interfacial Patterns, Industrial Engineering Chemistry Research, Volume 59 (2020) no. 9, p. 4119 | DOI:10.1021/acs.iecr.9b06064
- References, Process Engineering Renewal 2 (2020), p. 223 | DOI:10.1002/9781119751229.refs
- A Novel Hollow-Fiber Membrane Embedded Co-axial Microdevice for Simultaneous Extraction and Stripping, Solvent Extraction and Ion Exchange, Volume 38 (2020) no. 1, p. 103 | DOI:10.1080/07366299.2019.1691301
- Sustainable Green Production: A Review of Recent Development on Rare Earths Extraction and Separation Using Microreactors, ACS Sustainable Chemistry Engineering, Volume 7 (2019) no. 21, p. 17616 | DOI:10.1021/acssuschemeng.9b03384
- Preconcentration by solvent removal: techniques and applications, Analytical and Bioanalytical Chemistry, Volume 411 (2019) no. 9, p. 1715 | DOI:10.1007/s00216-018-1530-8
- Development of Novel Multiphase Microreactors: Recent Developments and Future Challenges, Handbook of Green Chemistry (2019), p. 115 | DOI:10.1002/9783527628698.hgc138
- Hysteretic heat transfer study of liquid–liquid two-phase flow in a T-junction microchannel, International Journal of Heat and Fluid Flow, Volume 77 (2019), p. 366 | DOI:10.1016/j.ijheatfluidflow.2019.05.008
- Design of a Novel Axial Gas Pulses Micromixer and Simulations of its Mixing Abilities via Computational Fluid Dynamics, Micromachines, Volume 10 (2019) no. 3, p. 205 | DOI:10.3390/mi10030205
- Tailoring Delivery System Functionality Using Microfluidics, Annual Review of Food Science and Technology, Volume 9 (2018) no. 1, p. 481 | DOI:10.1146/annurev-food-030117-012545
- Influence of Contact Angle Boundary Condition on CFD Simulation of T-Junction, Microgravity Science and Technology, Volume 30 (2018) no. 4, p. 435 | DOI:10.1007/s12217-018-9605-x
- µ‐Fluidics (or Microfluidics), From Additive Manufacturing to 3D/4D Printing 2 (2017), p. 81 | DOI:10.1002/9781119428299.ch2
- Analysis of the characteristic lengths in the bubble and slug flow regimes generated in a capillary T-junction, International Journal of Multiphase Flow, Volume 87 (2016), p. 167 | DOI:10.1016/j.ijmultiphaseflow.2016.09.011
- Surface Tension‐Dominated Flows, Transport Phenomena in Microfluidic Systems (2016), p. 149 | DOI:10.1002/9781118298428.ch5
- Effect of interfacial mass transfer on the dispersion in segmented flow in straight capillaries, AIChE Journal, Volume 61 (2015) no. 12, p. 4294 | DOI:10.1002/aic.14945
- Designing Food Structure Using Microfluidics, Food Engineering Reviews, Volume 7 (2015) no. 4, p. 393 | DOI:10.1007/s12393-014-9100-0
- A Novel Method of Fabricating, Adjusting, and Optimizing Polystyrene Colloidal Crystal Nonspherical Microparticles from Gas–Water Janus Droplets in a Double Coaxial Microfluidic Device, Crystal Growth Design, Volume 14 (2014) no. 2, p. 401 | DOI:10.1021/cg401653b
- Interfacial Instability, Encyclopedia of Microfluidics and Nanofluidics (2014), p. 1 | DOI:10.1007/978-3-642-27758-0_724-2
- Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales, Liquid Crystals Reviews, Volume 2 (2014) no. 2, p. 73 | DOI:10.1080/21680396.2014.963716
- Computational Fluid Dynamics Modelling of Microfluidic Channel for Dielectrophoretic BioMEMS Application, The Scientific World Journal, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/961301
- Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery, Advanced Drug Delivery Reviews, Volume 65 (2013) no. 11-12, p. 1420 | DOI:10.1016/j.addr.2013.05.009
- Preparation of cell-encapsulation devices in confined microenvironment, Advanced Drug Delivery Reviews, Volume 65 (2013) no. 11-12, p. 1533 | DOI:10.1016/j.addr.2013.07.021
- Liquid–Liquid Biphasic Reactions, Microreactors in Organic Chemistry and Catalysis (2013), p. 197 | DOI:10.1002/9783527659722.ch8
- Microfluidic encoding: Generation of arbitrary droplet sequences by electrical switching in microchannels, Sensors and Actuators A: Physical, Volume 189 (2013), p. 288 | DOI:10.1016/j.sna.2012.10.013
- Surface Tension Effects in Presence of Gas Compliance, Surface Tension in Microsystems (2013), p. 93 | DOI:10.1007/978-3-642-37552-1_5
- Theoretical Approach of Bubble Entrapment Through Interconnected Pores: Supplying Principle, Transport in Porous Media, Volume 96 (2013) no. 1, p. 105 | DOI:10.1007/s11242-012-0076-z
- Characterisation of bubbles formed in a cylindrical T-shaped junction device, Chemical Engineering Science, Volume 76 (2012), p. 206 | DOI:10.1016/j.ces.2012.04.025
- Continuous flow reactors: a perspective, Green Chem., Volume 14 (2012) no. 1, p. 38 | DOI:10.1039/c1gc16022b
- Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device, Journal of Controlled Release, Volume 160 (2012) no. 3, p. 409 | DOI:10.1016/j.jconrel.2012.04.019
- Addressing of Concentration Spaces for Bioscreenings by Micro Segmented Flow with Microphotometric and Microfluorimetric Detection, Optical Nano- and Microsystems for Bioanalytics, Volume 10 (2012), p. 47 | DOI:10.1007/978-3-642-25498-7_2
- Two-phase microfluidic flows, Chemical Engineering Science, Volume 66 (2011) no. 7, p. 1394 | DOI:10.1016/j.ces.2010.08.038
- One-step formation of multiple emulsions in microfluidics, Lab Chip, Volume 11 (2011) no. 2, p. 253 | DOI:10.1039/c0lc00236d
- Critical conditions and breakup of non-squashed microconfined droplets: effects of fluid viscoelasticity, Microfluidics and Nanofluidics, Volume 10 (2011) no. 6, p. 1153 | DOI:10.1007/s10404-010-0743-8
- Preparation and characterization of polysaccharidic microbeads by a microfluidic technique: Application to the encapsulation of Sertoli cells, Acta Biomaterialia, Volume 6 (2010) no. 2, p. 429 | DOI:10.1016/j.actbio.2009.08.023
- Mechanobiology and Finite Element Analysis of Cellular Injury During Microbubble Flows, Cellular and Biomolecular Mechanics and Mechanobiology, Volume 4 (2010), p. 373 | DOI:10.1007/8415_2010_25
- Phase-Transfer Catalysis in Segmented Flow in a Microchannel: Fluidic Control of Selectivity and Productivity, Industrial Engineering Chemistry Research, Volume 49 (2010) no. 6, p. 2681 | DOI:10.1021/ie9017918
- Production of low cost microfluidic chips by a “shrinking” approach: Applications to emulsion and microparticle production, Journal of Controlled Release, Volume 148 (2010) no. 1, p. e26 | DOI:10.1016/j.jconrel.2010.07.038
- Contact Line Pinning on Microstructured Surfaces for Liquids in the Wenzel State, Langmuir, Volume 26 (2010) no. 2, p. 860 | DOI:10.1021/la902296d
- Parallel-plate RF resonator imaging of chemical shift resolved capillary flow, Magnetic Resonance Imaging, Volume 28 (2010) no. 6, p. 826 | DOI:10.1016/j.mri.2010.03.033
- Multiphase surfactant-assisted reaction-separation system in a microchannel reactor, Frontiers of Chemical Engineering in China, Volume 3 (2009) no. 1, p. 33 | DOI:10.1007/s11705-009-0108-6
- Parallel computation of two-phase flow in a microchannel using the lattice Boltzmann method, Journal of Mechanical Science and Technology, Volume 23 (2009) no. 9, p. 2492 | DOI:10.1007/s12206-009-0422-4
- Opportunities for microfluidic technologies in synthetic biology, Journal of The Royal Society Interface, Volume 6 (2009) no. suppl_4 | DOI:10.1098/rsif.2009.0083.focus
- Double, Triple and Complex Multilayered Emulsions, Micro Process Engineering (2009), p. 345 | DOI:10.1002/9783527631445.ch38
- Microstructured Devices for Preparing Controlled Multiple Emulsions, Chemical Engineering Technology, Volume 31 (2008) no. 8, p. 1091 | DOI:10.1002/ceat.200800119
- Interfacial Instability, Encyclopedia of Microfluidics and Nanofluidics (2008), p. 866 | DOI:10.1007/978-0-387-48998-8_724
- Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel, International Journal of Multiphase Flow, Volume 34 (2008) no. 9, p. 852 | DOI:10.1016/j.ijmultiphaseflow.2008.02.009
- Preparation of microspheres based on alginate/agarose blends by microfluidic technique, Journal of Controlled Release, Volume 132 (2008) no. 3, p. e55 | DOI:10.1016/j.jconrel.2008.09.054
- Hydrodynamic voltammetry at the interface between immiscible electrolyte solutions: Numerical simulation of the voltammetric response, Journal of Electroanalytical Chemistry, Volume 615 (2008) no. 1, p. 25 | DOI:10.1016/j.jelechem.2007.11.021
- The steady propagation of an air finger into a rectangular tube, Journal of Fluid Mechanics, Volume 614 (2008), p. 173 | DOI:10.1017/s0022112008003455
- Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles, Lab Chip, Volume 8 (2008) no. 2, p. 287 | DOI:10.1039/b713141k
- Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology, Lab on a Chip, Volume 8 (2008) no. 4, p. 617 | DOI:10.1039/b714876c
- Biopolymer Microparticle and Nanoparticle Formation within a Microfluidic Device, Langmuir, Volume 24 (2008) no. 13, p. 6937 | DOI:10.1021/la703339u
- Organic Chemistry in Microreactors, Microreactors in Organic Synthesis and Catalysis (2008), p. 59 | DOI:10.1002/9783527622856.ch4
- Lab-on-a-chip in Vitro Compartmentalization Technologies for Protein Studies, Protein – Protein Interaction, Volume 110 (2008), p. 81 | DOI:10.1007/10_2008_098
- Recent progress in the determination of solid surface tensions from contact angles, Advances in Colloid and Interface Science, Volume 132 (2007) no. 1, p. 1 | DOI:10.1016/j.cis.2006.11.024
- Multiphase flow in microfluidic systems – Control and applications of droplets and interfaces, Advances in Colloid and Interface Science, Volume 133 (2007) no. 1, p. 35 | DOI:10.1016/j.cis.2007.03.001
- Microfluidic methods for generating continuous droplet streams, Journal of Physics D: Applied Physics, Volume 40 (2007) no. 19, p. R319 | DOI:10.1088/0022-3727/40/19/r01
- CFD Analyses and Validation of Multiphase Flow in Micro-Fluidic System, New Trends in Fluid Mechanics Research (2007), p. 647 | DOI:10.1007/978-3-540-75995-9_218
- Foam–wall friction: Effect of air volume fraction for tangentially immobile bubble surface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 282-283 (2006), p. 329 | DOI:10.1016/j.colsurfa.2006.04.028
- Transpiration actuation: the design, fabrication and characterization of biomimetic microactuators driven by the surface tension of water, Journal of Micromechanics and Microengineering, Volume 16 (2006) no. 11, p. 2375 | DOI:10.1088/0960-1317/16/11/018
- Initial study of two-phase laminar flow extraction chip for sample preparation for gas chromatography, Lab on a Chip, Volume 6 (2006) no. 8, p. 1067 | DOI:10.1039/b600374e
- Modifying the liquid/liquid interface: pores, particles and deposition, Physical Chemistry Chemical Physics, Volume 8 (2006) no. 16, p. 1869 | DOI:10.1039/b518018j
Cité par 72 documents. Sources : Crossref
Commentaires - Politique