Comptes Rendus
Towards a new kilogram definition based on a fundamental constant
[Vers une définition du kilogramme basée sur une constante fondamentale.]
Comptes Rendus. Physique, Volume 5 (2004) no. 8, pp. 881-892.

Un des plus grand défis actuels de la communauté de la métrologie consiste à poursuivre le développement du Système International d'unités et à redéfinir l'unité de masse à partir d'une constante fondamentale. Deux stratégies principales sont suivies actuellement, le comptage d'atomes et la réalisation de l'équivalence des puissances mécanique et électrique. Cet article présente la situation actuelle du kilogramme ainsi que les différentes méthodes proposées à ce jour.

The further development of the International System of Units and the redefinition of the mass unit based on a fundamental constant is a priority task of the metrology community. Two main strategies are pursued today, counting atoms and relating mechanical to electrical power. In this article the actual status of the kilogram and the different proposed methods are reviewed.

Publié le :
DOI : 10.1016/j.crhy.2004.05.005
Keywords: Kilogram, Planck constant, Avogadro, Watt balance
Mot clés : Kilogramme, Constante de Planck, Avogadro, Balance de watt

Wolfgang Schwitz 1 ; Beat Jeckelmann 1 ; Philippe Richard 1

1 Swiss Federal Office of Metrology and Accreditation (METAS), Lindenweg 50, 3003 Bern-Wabern, Switzerland
@article{CRPHYS_2004__5_8_881_0,
     author = {Wolfgang Schwitz and Beat Jeckelmann and Philippe Richard},
     title = {Towards a new kilogram definition based on a fundamental constant},
     journal = {Comptes Rendus. Physique},
     pages = {881--892},
     publisher = {Elsevier},
     volume = {5},
     number = {8},
     year = {2004},
     doi = {10.1016/j.crhy.2004.05.005},
     language = {en},
}
TY  - JOUR
AU  - Wolfgang Schwitz
AU  - Beat Jeckelmann
AU  - Philippe Richard
TI  - Towards a new kilogram definition based on a fundamental constant
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 881
EP  - 892
VL  - 5
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.05.005
LA  - en
ID  - CRPHYS_2004__5_8_881_0
ER  - 
%0 Journal Article
%A Wolfgang Schwitz
%A Beat Jeckelmann
%A Philippe Richard
%T Towards a new kilogram definition based on a fundamental constant
%J Comptes Rendus. Physique
%D 2004
%P 881-892
%V 5
%N 8
%I Elsevier
%R 10.1016/j.crhy.2004.05.005
%G en
%F CRPHYS_2004__5_8_881_0
Wolfgang Schwitz; Beat Jeckelmann; Philippe Richard. Towards a new kilogram definition based on a fundamental constant. Comptes Rendus. Physique, Volume 5 (2004) no. 8, pp. 881-892. doi : 10.1016/j.crhy.2004.05.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.05.005/

[1] W. Smeaton The foundation of the metric system in France in the 1790s, Platinum Metals Rev., Volume 44 (2000) no. 3, pp. 125-134

[2] H. Moreau, Le système métrique, Chiron, Paris

[3] The International System of Units, Bureau international des poids et mesures, BIPM, 1998

[4] G. Girard The third periodic verification of national prototypes of the kilogram (1988–1992), Metrologia, Volume 31 (1994), pp. 317-336

[5] J. Maxwell Report of the British Association for the Advancement of Science, 40 (1870), p. 215

[6] B.N. Taylor The possible role of the fundamental constants in replacing the kilogram, IEEE Trans. Instrum. Meas., Volume 40 (1991) no. 2, pp. 86-91

[7] V. Kose; B.R.L. Siebert; W. Wöger General principles for the definition of the base units in the SI, Metrologia, Volume 40 (2003), pp. 146-153

[8] T.J. Quinn The kilogram: the present state of our knowledge, IEEE Trans. Instrum. Meas., Volume 40 (1991) no. 2, pp. 81-85

[9] B.N. Taylor; T.J. Witt New international electric reference standards based on the Josephson and quantum Hall effects, Metrologia, Volume 26 (1989), pp. 47-62

[10] G. Girard, The washing and cleaning of kilogram prototypes at the BIPM, BIPM report

[11] R. Davis The SI unit of mass, Metrologia, Volume 40 (2003), pp. 299-305

[12] P.J. Mohr; B.N. Taylor CODATA recommended values of the fundamental physical constants: 1998, Rev. Mod. Phys., Volume 72 (2000) no. 2, pp. 351-495

[13] E.R. Williams; R.L. Steiner; D.B. Newell; P.T. Olsen Accurate measurement of the Planck constant, Phys. Rev. Lett., Volume 81 (1998) no. 12, pp. 2404-2407

[14] P. Becker History and progress in the accurate determination of the Avogadro constant, Rep. Prog. Phys., Volume 64 (2001), pp. 1945-2008

[15] P. Becker Tracing the definition of the kilogram to the Avogadro constant using a solicon single crystal, Metrologia, Volume 40 (2003), pp. 366-375

[16] M. Gläser Tracing the atomic mass unit to the kilogram by ion accumulation, Metrologia, Volume 40 (2003), pp. 376-386

[17] J. Martin; U. Kuetgens; J. Stümpel; P. Becker The silicon lattice parameter – an invariant quantity of nature, Metrologia, Volume 35 (1998), pp. 811-817

[18] I.L. Barnes; L.J. Moore; L.A. Machlan; T.J. Murphy; W.R. Shields Absolute isotopic abundance ratios and the atomic weight of a reference sample of silicon, J. Res. Nat. Bur. Stand. A, Volume 79 (1975), pp. 727-735

[19] P. de Bièvre; G. Lenaers; T.J. Murphy; H.S. Peiser; S. Valkiers The chemical preparation and characterization of specimens for absolute measurements of the molar mass of an element, exemplified by silicon, for redeterminations of the Avogadro constant, Metrologia, Volume 32 (1995), pp. 103-110

[20] S. Röttger; A. Paul; U. Keyser Prompt (n,gamma)-spectrometry for the isotopic analysis of silicon crystals for the Avogadro project, IEEE Trans. Instrum. Meas., Volume 46 (1997), pp. 560-562

[21] A.J. Leistner; W.J. Giardini Fabrication and sphericity measurements of single-crystal silicon spheres, Metrologia, Volume 31 (1994), pp. 231-243

[22] R.A. Nicolaus; G. Bönsch A novel interferometer for dimensional measurement of a silicon sphere, IEEE Trans. Instrum. Meas., Volume 46 (1997) no. 2, pp. 563-565

[23] K. Fujii Present state of the solid and liquid density standards, Metrologia, Volume 41 (2004), p. S1-S15

[24] P. Becker; H. Bettin; H.-U. Danzenbrink; M. Gläser; U. Kuetgens; A. Nicolaus; D. Schiel; P. de Bièvre; S. Valkiers; P. Taylor Determination of the Avogadro constant via the silicon route, Metrologia, Volume 40 (2003), pp. 271-287

[25] M. Gläser Proposal for a novel method of precisely determining the atom mass unit by accumulation of ions, Rev. Sci. Instrum., Volume 62 (1991), pp. 2493-2494

[26] P. Becker; M. Gläser Avogadro constant and ion accumulation: steps towards a redifinition of the SI unit of mass, Meas. Sci. Technol., Volume 14 (2003), pp. 1249-1258

[27] V.E. Bower; R.S. Davis The electrochemical equivalent of pure silver – a value of the Faraday constant, J. Res. Nat. Bur. Stand., Volume 85 (1980) no. 3, pp. 175-191

[28] B.P. Kibble A measurement of the gyromagnetic ratio of the proton by the strong field method (J.H. Sanders; A.H. Wapstra, eds.), Atomic Masses and Fundamental Constants, vol. 5, Plenum Press, New York, 1976, pp. 545-551

[29] A. Eichenberger; B. Jeckelmann; P. Richard Tracing Planck's constant to the kilogram by electromechanical methods, Metrologia, Volume 40 (2003), pp. 356-365

[30] C. Burroughs; S.P. Benz; T.E. Harvey; C.A. Hamilton 1 Volt DC programmable Josephson voltage standard, IEEE Trans. Appl. Supercond., Volume 9 ( June 1999 ) no. 2, pp. 4145-4149

[31] A. Courteville; Y. Salvadé; R. Dändliker High-precision velocimetry: optimization of a Fabry–Perot interferometer, Appl. Opt., Volume 39 (2000) no. 10, pp. 1521-1526

[32] B.P. Kibble Comparing a mass in vacuum with another in air by conventional weighing, Metrologia, Volume 27 (1990), pp. 157-158

[33] I.A. Robinson Comparing in-air and in-vacuum mass standards without buoyancy corrections via in-vacuum weighing, Metrologia, Volume 27 (1990), p. 159

[34] B.P. Kibble; I.A. Robinson; J.H. Belliss A realization of the SI watt by the NPL moving-coil balance, Metrologia, Volume 27 (1990), pp. 173-192

[35] I.A. Robinson; B.P. Kibble Progress in relating the kilogram to Planck's constant with the NPL watt balance, Conference on Precision Electromagnetic Measurements, CPEM, Conference Digest, 2002, pp. 574-575

[36] P.T. Olsen; R.E. Elmquist; W.D. Philips; E.R. Williams; G.R. Jones; V.E. Bower A measurement of the NBS electrical watt in SI units, IEEE Trans. Instrum. Meas., Volume 38 (1989) no. 2, pp. 238-244

[37] M.E. Cage; R.F. Dziuba; R.E. Elmquist; B.F. Field; G.R. Jones; P.T. Olsen; W.D. Phillips; J.Q. Shields; R.L. Steiner; B.N. Taylor; E.R. Williams NBS determination of the fine-structure constant, and of the quantized Hall resistance and Josephson frequency-to-voltage quotient in SI units, IEEE Trans. Instrum. Meas., Volume 38 (1989) no. 2, pp. 284-289

[38] P.T. Olsen; W.L. Tew; E.R. Williams; R.E. Elmquist; H. Sasaki Monitoring the mass standard via the comparison of mechanical to electrical power, IEEE Trans. Instrum. Meas., Volume 40 (1991) no. 2, pp. 115-120

[39] R.L. Steiner; A.G. Gillespie; K. Fujii; E.R. Williams; D.B. Newell; A. Picard; G.N. Stenbakken; P.T. Olsen The NIST watt balance: progress toward the monitoring of the kilogram, IEEE Trans. Instrum. Meas., Volume 46 (1997) no. 2, pp. 601-604

[40] W. Beer; B. Jeanneret; B. Jeckelmann; P. Richard; A. Courteville; Y. Salvadé; R. Dändliker A proposal for a new moving-coil experiment, IEEE Trans. Instrum. Meas., Volume 48 (1999) no. 2, pp. 192-195

[41] W. Beer; A.L. Eichenberger; B. Jeanneret; B. Jeckelmann; A.R. Pourzand; P. Richard; J.P. Schwarz Status of the METAS watt balance experiment, IEEE Trans. Instrum. Meas., Volume 52 (2003) no. 2, pp. 626-630

[42] D.B. Sullivan; N.V. Frederich Can superconductivity contribute to the determination of the absolute ampere, IEEE Trans. Magnetics, Volume 13 (1977), pp. 396-399

[43] F. Shiota; K. Hara A study of a superconducting magnetic levitation system for an absolute determination of the magnetic flux quantum, IEEE Trans. Instrum. Meas., Volume IM-36 (1987) no. 2, pp. 271-274

[44] F. Shiota; Y. Miki; A. Namba; Y. Nezu; Y. Sakamoto; T. Morokuma; K. Hara Absolute determination of the magnetic flux quantum using superconducting magnetic levitation, IEEE Trans. Instrum. Meas., Volume 44 (1995) no. 2, pp. 583-586

[45] E.T. Frantsuz; Y.D. Gorchakov; V.M. Khavinson Measurements of the magnetic flux quantum, Planck constant, and elementary charge at VNIIM, IEEE Trans. Instrum. Meas., Volume 41 (1992) no. 4, pp. 482-485

[46] F. Shiota; Y. Miki; Y. Fujii; T. Morokuma; Y. Nezu Evaluation of equilibrium trajectory of superconducting magnetic levitation system for the future kg unit of mass, IEEE Trans. Instrum. Meas., Volume 49 (2000) no. 5, pp. 1117-1121

[47] Y. Fujii; Y. Miki; F. Shiota; T. Morokuma Mechanism for levitated superconductor experiment, IEEE Trans. Instrum. Meas., Volume 50 (2001) no. 2, pp. 580-582

[48] K. Riski; P. Heikkinen; H. Kajastie; J. Manninen; H. Rossi; K. Nummila; E. Frantsuz; V. Khavinson Design of a superconductiong magnetic levitation system, Proceedings IMEKO TC3 2001, 2001, pp. 239-246

[49] V. Bego Determination of the volt by means of voltage balances, Metrologia, Volume 25 (1988), pp. 127-133

[50] T. Funck; V. Sienknecht Determination of the volt with the improved PTB voltage balance, IEEE Trans. Instrum. Meas., Volume 40 (1991) no. 2, pp. 158-161

[51] V. Bego; J. Butorac; K. Poljančić Voltage balance for replacing the kilogram, IEEE Trans. Instrum. Meas., Volume 44 (1995) no. 2, pp. 579-582

[52] V. Bego; J. Butorac; D. Ilić Realization of the kilogram by measuring at 100 kV with the voltage balance ETF, IEEE Trans. Instrum. Meas., Volume 48 (1999) no. 2, pp. 212-215

[53] B.N. Taylor; P.J. Mohr On the redefinition of the kilogram, Metrologia, Volume 36 (1999), pp. 63-64

[54] P. de Bièvre; S. Valkiers; R. Kessel; P.D.P. Taylor; P. Becker; H. Bettin; A. Peuto; S. Pettorruso; K. Fujii; A. Waseda; M. Tanaka; R.D. Deslattes; H.S. Peiser; M.J. Kenny A reassessment of the molar volume of silicon and the Avogadro constant, IEEE Trans. Instrum. Meas., Volume 50 (2001) no. 2, pp. 593-597

[55] P. Becker The molar volume of single-crystal silicon, Metrologia, Volume 38 (2001), pp. 85-86

Cité par Sources :

Commentaires - Politique