Comptes Rendus
The new International System of Units / Le nouveau Système international d'unités
The Kibble balance and the kilogram
[La balance de Kibble et le kilogramme]
Comptes Rendus. Physique, Volume 20 (2019) no. 1-2, pp. 55-63.

Bryan Kibble a inventé la balance du watt en 1975 pour améliorer la réalisation de l'unité de courant électrique, l'ampère. Après la découverte de l'effet Hall quantique en 1980 par Klaus von Klitzing, conjointement avec un autre effet quantique prédit par Josephson, cet instrument mécanique peut être utilisé pour mesurer la constante de Planck h. Quinn, Mills, Williams, Taylor et Mohr ont proposé d'utiliser la balance de Kibble pour réaliser l'unité de masse, le kilogramme, en fixant la valeur numérique de la constante de Planck. Depuis 2017, la balance du watt a été renomée « balance de Kibble » pour honorer son inventeur, décédé en 2016. Cet article décrit la balance de Kibble ainsi que son rôle dans la redéfinition de l'unité de masse, et présente de futures perspectives.

Dr. Bryan Kibble invented the watt balance in 1975 to improve the realization of the unit for electrical current, the ampere. With the discovery of the Quantum Hall effect in 1980 by Dr. Klaus von Klitzing and in conjunction with the previously predicted Josephson effect, this mechanical apparatus could be used to measure the Planck constant h. Following a proposal by Quinn, Mills, Williams, Taylor, and Mohr, the Kibble balance can be used to realize the unit of mass, the kilogram, by fixing the numerical value of Planck's constant. In 2017, the watt balance was renamed to the Kibble balance to honor the inventor, who passed in 2016. This article explains the Kibble balance, its role in the redefinition of the unit of mass, and attempts an outlook of the future.

Publié le :
DOI : 10.1016/j.crhy.2018.11.006
Keywords: Unit of mass, Kilogram, Planck constant, Kibble balance, Revised SI, Josephson effect, Quantum Hall effect
Mot clés : Unité de masse, Kilogramme, Constante de Planck, Balance de Kibble, Révision du SI, Effet Josephson, Effet Hall quantique

Stephan Schlamminger 1 ; Darine Haddad 1

1 NIST, 100 Bureau Drive, Gaithersburg, MD 20899, USA
@article{CRPHYS_2019__20_1-2_55_0,
     author = {Stephan Schlamminger and Darine Haddad},
     title = {The {Kibble} balance and the kilogram},
     journal = {Comptes Rendus. Physique},
     pages = {55--63},
     publisher = {Elsevier},
     volume = {20},
     number = {1-2},
     year = {2019},
     doi = {10.1016/j.crhy.2018.11.006},
     language = {en},
}
TY  - JOUR
AU  - Stephan Schlamminger
AU  - Darine Haddad
TI  - The Kibble balance and the kilogram
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 55
EP  - 63
VL  - 20
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.11.006
LA  - en
ID  - CRPHYS_2019__20_1-2_55_0
ER  - 
%0 Journal Article
%A Stephan Schlamminger
%A Darine Haddad
%T The Kibble balance and the kilogram
%J Comptes Rendus. Physique
%D 2019
%P 55-63
%V 20
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2018.11.006
%G en
%F CRPHYS_2019__20_1-2_55_0
Stephan Schlamminger; Darine Haddad. The Kibble balance and the kilogram. Comptes Rendus. Physique, Volume 20 (2019) no. 1-2, pp. 55-63. doi : 10.1016/j.crhy.2018.11.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.11.006/

[1] S. Débarbat; T. Quinn Les origines du système métrique en France et la Convention du mètre de 1875, qui a ouvert la voie au Système international d'unités et à sa révision de 2018, C. R. Physique, Volume 20 (2019) no. 1–2, pp. 6-21 ( in this issue )

[2] H. Bettin; K. Fujii; A. Nicolaus Silicon spheres for the future realization of the kilogram and the mole, C. R. Physique, Volume 20 (2019) no. 1–2, pp. 64-76 ( in this issue )

[3] C. Snow Mutual inductance and force between two coaxial helical wires, J. Res. Natl. Bur. Stand., Volume 22 (1939) no. 2, pp. 239-269

[4] R.L. Driscoll Measurement of current with a Pellat-type electrodynamometer, J. Res. Natl. Bur. Stand., Volume 60 (1958), p. 287

[5] B.P. Kibble A measurement of the gyromagnetic ratio of the proton by the strong field method (J.H. Sanders; A.H. Wapstra, eds.), Atomic Masses and Fundamental Constants, vol. 5, Plenum Press, New York, 1976, pp. 545-551

[6] K.v. Klitzing; G. Dorda; M. Pepper New method for high accuracy determination of the fine-structure constant based on quantised Hall resistance, Phys. Rev. Lett., Volume 45 (1980), pp. 494-497

[7] B.D. Josephson Possible new effects in superconductive tunneling, Phys. Lett., Volume 1 (1962), pp. 251-253

[8] B.P. Kibble; I.A. Robinson; J.H. Belliss A realisation of the SI watt by the NPL moving-coil balance, Metrologia, Volume 27 (1990), pp. 173-192

[9] B.N. Taylor The possible role of the fundamental constants in replacing the kilogram, 1990 Conference on Precision Electromagnetic Measurements Digest, 1990, p. 168

[10] B.N. Taylor The possible role of the fundamental constants in replacing the kilogram, IEEE Trans. Instrum. Meas., Volume 40 (1991) no. 2, pp. 86-91

[11] P.T. Olsen; W.L. Tew; E.R. Williams; R.E. Elmquist; H. Sasaki Monitoring the mass standard via the comparison of mechanical to electrical power, IEEE Trans. Instrum. Meas., Volume 40 (1991) no. 2, pp. 115-120

[12] I.M. Mills; P.J. Mohr; T.J. Quinn; B.N. Taylor; E.R. Williams Redefinition of the kilogram: a decision whose time has come, Metrologia, Volume 42 (2005), pp. 71-80

[13] S.P. Benz; C.A. Hamilton; C.J. Burroughs; T.E. Harvey; L.A. Christian Stable 1 volt programmable voltage standard, Appl. Phys. Lett., Volume 71 (1997) no. 13, pp. 1866-1868

[14] C.A. Hamilton Josephson voltage standards, Rev. Sci. Instrum., Volume 71 (2000) no. 10, pp. 3611-3623

[15] I.K. Harvey A precise low temperature dc ratio transformer, Rev. Sci. Instrum., Volume 43 (1972), pp. 1626-1629

[16] B.P. Kibble; G.J. Hunt A measurement of the gyromagnetic ratio of the proton in a strong magnetic field, Metrologia, Volume 15 (1977) no. 5

[17] S. Li; F. Bielsa; M. Stock; A. Kiss; H. Fang Coil-current effect in Kibble balances: analysis, measurement, and optimization, Metrologia, Volume 55 (2018) no. 1, p. 75

[18] H. Ahmedov; N. Babayiğit Aşkın; B. Korutlu; R. Orhan Preliminary Planck constant measurements via UME oscillating magnet Kibble balance, Metrologia, Volume 55 (2018) no. 3, p. 326

[19] Z. Zhang; Q. He; Z. Li An approach for improving the watt balance, 2006 Conference on Precision Electromagnetic Measurements Digest, 2006, pp. 126-127 (ISBN: 88-7992-228-9)

[20] D.B. Newell; F. Cabiati; J. Fischer; K. Fujii; S.G. Karshenboim; H.S. Margolis; E. de Mirandés; P.J. Mohr; F. Nez; K. Pachucki; T.J. Quinn; B.N. Taylor; M. Wang; B.M. Wood; Z. Zhang The CODATA 2017 values of h, e, k, and NA for the revision of the SI, Metrologia, Volume 55 (2018) no. 1, p. L13

[21] B.P. Kibble; I.A. Robinson Principles of a new generation of simplified and accurate watt balances, Metrologia, Volume 51 (2014) no. 2, p. S132-S139

[22] S. Schlamminger; J. Pratt; D. Newell; F. Seifetr; D. Haddad; M. Liu; L. Chao; L.M. Peña-Pérez; S. Li Design of a table-top watt balance, NCLSI Symposium 2016, 2016

[23] C. Rothleitner; J. Schleichert; N. Rogge; L. Günther; S. Vasilyan; F. Hilbrunner; D. Knopf; T. Fröhlich; F. Härtig The Planck-balance—using a fixed value of the Planck constant to calibrate E1/E2-weights, Meas. Sci. Technol., Volume 29 (2018) no. 7

[24] I.A. Robinson; J. Berry; C. Bull; S. Davidson; C. Jarvis; P. Lovelock; C. Lucas; J. Urquhart; E. Webster; P. Williams Developing the next generation of NPL Kibble balances, 2018 Conference on Precision Electromagnetic Measurements Digest, 2018, pp. 326-327

[25] B.P. Kibble; R.C. Smith; I.A. Robinson The NPL moving-coil ampere determination, IEEE Trans. Instrum. Meas., Volume 32 (1983), pp. 141-143

[26] S. Schlamminger; R.L. Steiner; D. Haddad; D.B. Newell; F. Seifert; L.S. Chao; R. Liu; E.R. Williams; J.R. Pratt A summary of the Planck constant measurements using a watt balance with a superconducting solenoid at NIST, Metrologia, Volume 52 (2015) no. 2, p. L5-L8

[27] P.T. Olsen; W.D. Phillips; E.R. Williams A proposed coil system for the improved realization of the absolute ampere, J. Res. Natl. Bur. Stand., Volume 85 (1980) no. 4, pp. 257-272

[28] H. Fang; A. Kiss; E. de Mirandés; J. Lan; L. Robertsson; S. Solve; A. Picard; M. Stock Status of the BIPM watt balance, IEEE Trans., Volume 62 (2013) no. 6, pp. 1491-1498

[29] M.H. Kim; D. Kim; B.C. Woo; D. Ha; S.U. Lee; H.S. Park; J. Kim; K.C. Lee Establishment of KRISS watt balance system to have high uniformity performance, Int. J. Precis. Eng. Manuf., Volume 18 (2017) no. 7, pp. 945-953

[30] M. Thomas; D. Ziane; P. Pinot; R. Karcher; A. Imanaliev; F. Pereira Dos Santos; S. Merlet; F. Piquemal; P. Espel A determination of the Planck constant using the LNE Kibble balance in air, Metrologia, Volume 54 (2017) no. 4, p. 468

[31] P. Pinot; P. Espel; Y. Liu; M. Thomas; D. Ziane; M.-A. Palacios-Restrepo; F. Piquemal Static phase improvements in the LNE watt balance, Rev. Sci. Instrum., Volume 87 (2016) no. 10

[32] H. Baumann; A. Eichenberger; F. Cosandier; B. Jeckelmann; R. Clavel; D. Reber; D. Tommasini Design of the new METAS watt balance experiment Mark II, Metrologia, Volume 50 (2013) no. 3, p. 235

[33] P. Gournay; G. Geneves; F. Alves; M. Besbes; F. Villar; J. David Magnetic circuit design for the BNM watt balance experiment, IEEE Trans. Instrum. Meas., Volume 54 (2005) no. 2, pp. 742-745

[34] C.M. Sutton; M.T. Clarkson; W.M. Kissling The feasibility of a watt balance based on twin pressure balances, 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), 2016, pp. 1-2

[35] C.M. Sutton; M.T. Clarkson A magnet system for the MSL watt balance, Metrologia, Volume 51 (2014) no. 2, p. S101-S106

[36] B.M. Wood; C.A. Sanchez; R.G. Green; J.O. Liard A summary of the Planck constant determinations using the NRC Kibble balance, Metrologia, Volume 54 (2017) no. 3, p. 399

[37] Z. Li; Z. Zhang; Y. Lu; P. Hu; Y. Liu; J. Xu; Y. Bai; T. Zeng; G. Wang; Q. You; D. Wang; S. Li; Q. He; J. Tan The first determination of the Planck constant with the joule balance NIM-2, Metrologia, Volume 54 (2017) no. 5, p. 763

[38] D. Haddad; F. Seifert; L.S. Chao; A. Possolo; D.B. Newell; J.R. Pratt; C.J. Williams; S. Schlamminger Measurement of the Planck constant at the National Institute of Standards and Technology from 2015 to 2017, Metrologia, Volume 54 (2017) no. 5, p. 633

[39] I.A. Robinson Simplified fundamental force and mass measurements, Metrologia, Volume 53 (2016) no. 4, pp. 1054-1060

[40] C.M. Sutton An oscillatory dynamic mode for a watt balance, Metrologia, Volume 46 (2009) no. 5, p. 467

[41] R.L. Steiner History and progress on accurate measurements of the Planck constant, Rep. Prog. Phys., Volume 76 (2013) | DOI

[42] M. Stock Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram, Metrologia, Volume 50 (2013) no. 1, p. R1-R16

[43] S.-S. Li; s.H. Zhang; W. Zhao; Z.-K. Li; S.-L. Huang Progress on accurate measurement of the Planck constant: watt balance and counting atoms, Chin. Phys. B, Volume 24 (2015) no. 1

[44] I.A. Robinson; S. Schlamminger The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass, Metrologia, Volume 53 (2016) no. 5, p. A46

[45] P.J. Mohr; D.B. Newell; B.N. Taylor; E. Tiesinga Data and analysis for the CODATA 2017 special fundamental constants adjustment, Metrologia, Volume 55 (2018) no. 1, p. 125

[46] International Recommendation on Weights of Classes E1, E2, F1, F2, M1, M1−2, M2, M2−3, and M3, Part 1: Metrological and Technical Requirements, Organisation internationale de métrologie légale, Paris, 2004 (Technical Report International Recommendation No. R111-1)

Cité par Sources :

Commentaires - Politique