The advent of the fundamental constants RK (the von Klitzing constant) and KJ (the Josephson constant) in electrical metrology and the growing development of nanotechnologies have totally changed the vision and the practice of the National Metrology Institutes (NMIs), opening a modern era of metrology and arousing a growing interest in a possible re-definition of the international system of units (SI). The Josephson effect (JE) and the Quantum Hall effect (QHE), at the origin of these fundamental constants, constitute the keystone of a new approach to electrical units, when one considers the very high level of reproducibility of these units, never seen before. On the other hand, the Watt balance experiment in which these constants play a part could be the origin of a new SI definition, replacing the mass unit ‘the kilogram’ as a fundamental unit by the Planck constant h. It thus seems that the implementation of experiments aimed at demonstrating the coherency between the theoretical and phenomenological values of these constants is a major objective. In this framework the metrological triangle experiment associating QHE, JE and single electron tunnelling effect would play a major role in checking the consistency of these fundamental constants in terms of the Planck and electron charge constants. This article gives briefly an outline of these quantum phenomena and their metrological applications in NMIs for the realisation of electrical units and the determination of the fundamental constants.
L'avènement des constantes fondamentales (von Klitzing) et (Josephson) dans la métrologie électrique et le développement considérable des nanotechnologies ont totalement bouleversé la vision et la pratique des Laboratoires Nationaux de Métrologie (LNMs) ouvrant ainsi une ère nouvelle, incontestablement moderne de la métrologie et suscitant un intérêt croissant pour une possible re-fondation du système international d'unités (SI). L'effet Josephson (EJ) et l'effet Hall quantique (EHQ), à l'origine de ces constantes fondamentales, constituent la clé de voûte d'une nouvelle approche des unités électriques compte tenu du très haut niveau de reproductibilité de ces unités jamais atteint auparavant. D'autre part, une expérience comme la balance du watt dans laquelle ces constantes interviennent pourrait être à l'origine d'une nouvelle définition du SI dans lequel la constante de Planck h prendrait le pas sur l'unité de masse « le kilogramme ». Il apparaît donc que la mise en œuvre d'expériences visant à démontrer la cohérence entre les valeurs théoriques et phénoménologiques de ces constantes soit un objectif majeur. C'est dans ce cadre qu'intervient l'expérience du triangle métrologique par l'association de l'EHQ, l'EJ et l'effet tunnel à un électron pour vérifier la cohérence de ces constantes fondamentales en terme des constantes de Planck et de charge de l'électron. Cet article donne brièvement un aperçu de ces phénomènes quantiques et leurs applications métrologiques dans les LNMs pour la réalisation des unités électriques et la détermination des constantes fondamentales.
Mots-clés : Étalons électriques fondamentaux, Système international d'unités SI, Constantes fondamentales, Effet Josephson, Effet Hall quantique, Effet tunnel à un électron, Triangle métrologique quantique
François Piquemal 1; Alexandre Bounouh 1; Laurent Devoille 1; Nicolas Feltin 1; Olivier Thevenot 1; Gérard Trapon 1
@article{CRPHYS_2004__5_8_857_0, author = {Fran\c{c}ois Piquemal and Alexandre Bounouh and Laurent Devoille and Nicolas Feltin and Olivier Thevenot and G\'erard Trapon}, title = {Fundamental electrical standards and the quantum metrological triangle}, journal = {Comptes Rendus. Physique}, pages = {857--879}, publisher = {Elsevier}, volume = {5}, number = {8}, year = {2004}, doi = {10.1016/j.crhy.2004.08.006}, language = {en}, }
TY - JOUR AU - François Piquemal AU - Alexandre Bounouh AU - Laurent Devoille AU - Nicolas Feltin AU - Olivier Thevenot AU - Gérard Trapon TI - Fundamental electrical standards and the quantum metrological triangle JO - Comptes Rendus. Physique PY - 2004 SP - 857 EP - 879 VL - 5 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2004.08.006 LA - en ID - CRPHYS_2004__5_8_857_0 ER -
%0 Journal Article %A François Piquemal %A Alexandre Bounouh %A Laurent Devoille %A Nicolas Feltin %A Olivier Thevenot %A Gérard Trapon %T Fundamental electrical standards and the quantum metrological triangle %J Comptes Rendus. Physique %D 2004 %P 857-879 %V 5 %N 8 %I Elsevier %R 10.1016/j.crhy.2004.08.006 %G en %F CRPHYS_2004__5_8_857_0
François Piquemal; Alexandre Bounouh; Laurent Devoille; Nicolas Feltin; Olivier Thevenot; Gérard Trapon. Fundamental electrical standards and the quantum metrological triangle. Comptes Rendus. Physique, Fundamental metrology, Volume 5 (2004) no. 8, pp. 857-879. doi : 10.1016/j.crhy.2004.08.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.08.006/
[1] C. R. Physique, 5 (2004) (in this issue) | DOI
[2] Nature, 177 (1956), pp. 888-890
[3] Phys. Rev. Lett., 45 (1980) no. 6, pp. 494-497
[4] The Quantum Hall Effect (R.E. Prange; S.M. Girvin, eds.), Springer-Verlag, New York, 1990
[5] Quantum Hall Effect, World Scientific, Singapore, 1992
[6] Metrologia, 29 (1992) no. 2, pp. 175-190
[7] Bull. BNM, 116 (1999), pp. 5-57
[8] Rep. Prog. Phys., 64 (2000), pp. 1603-1655
[9] Rev. Mod. Phys., 1 (1962), pp. 251-253
[10] SQUIDs, the Josephson Effects and Superconducting Electronics, Adam Hilger, Bristol, 1990
[11] Metrologia, 29 (1992) no. 2, pp. 153-174
[12] IEEE Trans. Appl. Supercond., 17 (1997) no. 2, pp. 3756-3761
[13] Meas. Sci. Technol., 14 (2003), pp. 1216-1228
[14] Metrologia, 29 (1992) no. 2, pp. 95-112
[15] 2002 CODATA values available on: http://www.physics.nist.gov/constants
[16] C. R. Physique, 5 (2004) (in this issue) | DOI
[17] Single charge tunneling Coulomb blockade phenomena in nanostructures (H. Grabert; M.H. Devoret, eds.), NATO Adv. Sci. Inst. Ser. B Phys., vol. 294, Plenum Press, New York, 1991
[18] Recent Advances in Metrology and Fundamental Constants, Proceedings of Fermi School CXLVI, Vérone, 2000
[19] J. Low Temp. Phys., 59 (1985), pp. 347-382
[20] Metrologia, 37 (2000), pp. 207-211
[21] C. Bordé, BIPM Summer School, Sèvres, private communication, 2003
[22] Metrologia, 1 (1965) no. 2, pp. 35-56
[23] IEEE T. Instrum. Meas., 50 (2001) no. 2, pp. 572-575
[24] Metrologia, 40 (2003), pp. 159-171
[25] CIPM, Rapport de la 22ème session du CCEM, 89ème session, octobre 2000, p. 34
[26] CIPM, Représentation de l'ohm au moyen de l'effet Hall quantique, Recommandation 2 (CI-1988), 77ème session, octobre 1988
[27] IEEE T. Instrum. Meas., 42 (1993) no. 2, pp. 264-268
[28] Phys. Rev. B, 23 (1981) no. 10, pp. 5632-5633
[29] Phys. Rev. B, 38 (1988), pp. 9375-9389
[30] Metrologia, 40 (2003), pp. 217-223
[31] Phys. Rev. Lett., 66 (1991), pp. 969-973
[32] IEEE T. Instrum. Meas., 44 (1995), pp. 269-272
[33] IEEE T. Instrum. Meas., 44 (1995), pp. 258-261
[34] Data available on BIPM website: http://www.bipm.fr/
[35] IEEE T. Instrum. Meas., 50 (2001), pp. 238-241
[36] Metrologia, 39 (2002), pp. 207-212
[37] Proc. of 9ème Congrès International de Métrologie, Bordeaux, 1999
[38] A.D. Inglis, in: Conf. Digest CPEM 2004, London, 2004, in press
[39] J.C. Gallop, F. Piquemal, SQUIDS for standards and metrology, in: J. Clarke, A. Braginski (Eds.), SQUIDS Handbook, chapter 9, Wiley, Berlin, in press
[40] Rev. Sci. Instrum., 43 (1972), pp. 1626-1629
[41] Rev. Sci. Instrum., 45 (1974), pp. 517-519
[42] IEEE T. Instrum. Meas., 27 (1978), pp. 426-429
[43] J. Appl. Phys., 73 (1993), pp. 7914-7920
[44] IEEE T. Instrum. Meas., 48 (1999) no. 2, pp. 296-300
[45] J. Appl. Phys., 92 (2002), pp. 2844-2854
[46] Conf. Digest CPEM 2002, Ottawa, 2002, pp. 534-535
[47] Metrologia, 41 (2004), pp. 285-294
[48] IEEE T. Instrum. Meas., 52 (2003) no. 2, pp. 555-558
[49] Metrologia, 37 (2000), pp. 659-670
[50] Delahaye F., Rapport BIPM-2001/01
[51] IEEE T. Instrum. Meas., 52 (2003) no. 2, pp. 574-578
[52] et al. IEEE T. Instrum. Meas., 52 (2003) no. 2, pp. 563-568
[53] Phys. Rev. Lett., 11 (1963), pp. 80-82
[54] Phys. Rev. B, 2 (1970), pp. 109-121
[55] Phys. Rev. Lett., 51 (1983) no. 4, pp. 316-319
[56] CIPM, Représentation du volt au moyen de l'effet Josephson, Recommandation 1 (CI-1988), 77ème session, octobre 1988
[57] Appl. Phys. Lett., 12 (1968) no. 8, pp. 277-280
[58] J. Appl. Phys., 39 (1968) no. 7, pp. 3113-3118
[59] Josephson junctions (B. Seeber, ed.), Handbook of Applied Superconductivity, Bristol, 1998, pp. 1759-1775
[60] Introduction to Superconducting Circuits, Wiley, New York, 1999
[61] Appl. Phys. Lett., 31 (1977), pp. 776-778
[62] Appl. Phys. Lett., 45 (1984), pp. 478-480
[63] IEEE T. Instrum. Meas., 38 (1989) no. 2, pp. 314-316
[64] IEEE T. Instrum. Meas., 40 (1991) no. 2, pp. 298-300
[65] Metrologia, 36 (1999), pp. 53-58
[66] IEEE T. Instrum. Meas., 52 (2003) no. 2, pp. 487-490
[67] Bull. BNM, 111 (1998), pp. 3-12
[68] IEEE T. Instrum. Meas., 42 (1993) no. 2, pp. 596-599
[69] IEEE T. Instrum. Meas., 48 (1999) no. 2, pp. 257-261
[70] IEEE T. Instrum. Meas., 50 (2001) no. 2, pp. 188-191
[71] IEEE T. Instrum. Meas., 48 (1999) no. 2, pp. 270-273
[72] et al. IEEE T. Instrum. Meas., 52 (2003) no. 2, pp. 524-528
[73] IEEE T. Instrum. Meas., 48 (1999), pp. 282-284
[74] et al. IEEE T. Instrum. Meas., 50 (2001), pp. 185-187
[75] IEEE T. Instrum. Meas., 52 (2003) no. 2, pp. 521-523
[76] IEEE T. Instrum. Meas., 44 (1995), pp. 223-225
[77] IEEE T. Appl. Supercond., 9 (1999), pp. 4145-4149
[78] Applied Superconductivity, Inst. Phys. Conf. Ser., 167 (2000), pp. 769-772
[79] IEEE T. Instrum. Meas., 50 (2001), pp. 195-198
[80] et al. IEEE T. Instrum. Meas., 52 (2003) no. 2, pp. 516-520
[81] Supercond. Sci. Technol., 15 (2002) no. 7, p. 1034
[82] et al. Conf. Digest CPEM 2002, Ottawa, 2002, pp. 434-435
[83] Appl. Phys. Lett., 68 (1996), pp. 3171-3173
[84] IEEE T. Instrum. Meas., 52 (2003) no. 2, pp. 542-544
[85] et al. Conf. Digest CPEM 2004, London, 2004
[86] IEEE T. Appl. Supercond., 2 (1992), pp. 139-142
[87] IEEE T. Appl. Supercond., 3 (1993), pp. 2637-2640
[88] IEEE T. Appl. Supercond., 2 (1999), pp. 3561-3564
[89] IEEE T. Appl. Supercond., 11 (2001), pp. 550-553
[90] et al. IEEE T. Instrum. Meas., 50 (2001) no. 2, pp. 583-586
[91] et al. Conf. Digest CPEM 2004, London, 2004
[92] Phys. Rev., 181 (1969), p. 789
[93] Physica B, 169 (1991), pp. 573-574
[94] IEEE T. Instrum. Meas., 52 (2003), pp. 599-603
[95] F. Gay, PhD Thesis, Conservatoire des Arts et Métiers, Paris, France, 2000
[96] Rev. Sci. Instrum., 71 (2000), pp. 4592-4595
[97] Appl. Phys. Lett., 69 (1996), pp. 1804-1806
[98] Appl. Phys. Lett., 78 (2001), pp. 946-948
[99] Single-electronics: correlated transfer of single electrons and Cooper pairs in small tunnel junctions (B.L. Alsthuler; P.A. Lee; R.A. Webb, eds.), Mesoscopic Phenomena in Solids, North-Holland, Elsevier, Amsterdam, 1991, pp. 173-271
[100] et al. Z. Phys. B, 85 (1991), p. 349
[101] arXiv
, 2000 (v1) |[102] Science, 280 (1998), pp. 1238-1242
[103] et al. J. Phys. Cond. Matt., 8 (1996), p. L531-L539
[104] IEEE T. Instrum. Meas., 52 (2003), pp. 594-598
[105] et al. Phys. Rev. B, 68 (2003), p. 245310
[106] Proceedings of BEMC'2001, Harrogate, 2001 (IEE special issue, 2002)
[107] N. Feltin, L. Devoille, F. Piquemal, Bull. BNM, in press
[108] Science, 285 (1999), pp. 1706-1709
Cited by Sources:
Comments - Policy