Self-organization of magnetic materials is an emerging and active field. An overview of the use of self-organization for magnetic purposes is given, with a view to illustrate aspects that cannot be covered by lithography. A first set of issues concerns the quantitative study of low-dimensional magnetic phenomena (1D and 0D). Such effects also occur in microstructured and lithographically-patterned materials but cannot be studied in these because of the complexity of such materials. This includes magnetic ordering, magnetic anisotropy and superparamagnetism. A second set of issues concerns the possibility to directly use self-organization in devices. Two sets of examples are given: first, how superparamagnetism can be fought by fabricating thick self-organized structures, and second, what new or improved functionalities can be expected from self-organized magnetic systems, like the tailoring of magnetic anisotropy or controlled dispersion of properties.
Alors que l'auto-organisation est un domaine maintenant consacré pour les semi-conducteurs, il est en émergence pour les matériaux magnétiques, avec une activité soutenue les cinq dernières années. Un panorama des contributions de l'auto-organisation au magnétisme est proposé ici, avec pour but de montrer les possibilités nouvelles offertes, notamment par rapport à la lithographie. Une première catégorie d'études concerne la mesure et la compréhension de phénomènes magnétiques en basse dimensionnalité, qui existent dans les matériaux applicatifs mais ne peuvent y être étudiés quantitativement du fait de leur complexité : mise en ordre magnétique, anisotropie magnétique, superparamagnétisme. Une seconde catégorie concerne la perspective de l'utilisation directe de systèmes auto-organisés. Des exemples sont donnés pour combattre le superparamagnétisme en fabriquant des structures auto-organisées épaisses, ou établir des fonctionnalités nouvelles, notamment le contrôle de l'anisotropie et de la dispersion de propriétés.
Mots-clés : Auto-organisation, Auto-assemblage, Magnétisme, Anisotropie magnétique, Micromagnétisme, Superparamagnétisme
Olivier Fruchart 1
@article{CRPHYS_2005__6_1_61_0, author = {Olivier Fruchart}, title = {Epitaxial self-organization: from surfaces to magnetic materials}, journal = {Comptes Rendus. Physique}, pages = {61--73}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.007}, language = {en}, }
Olivier Fruchart. Epitaxial self-organization: from surfaces to magnetic materials. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 61-73. doi : 10.1016/j.crhy.2004.11.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.007/
[1] Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett., Volume 40 (1982), pp. 939-941
[2] Gain and the threshold of three dimensional quantum-box lasers, IEEE J. Quantum Elect., Volume 22 (1986), pp. 1915-1921
[3] Key parameters for the formation of self-assembled quantum dots induced by the Stranski–Krastanov transition: a comparison for various semiconductor systems, C. R. Physique, Volume 6 (2005) no. 1
[4] Recent advances in semiconductor quantum-dot lasers, C. R. Physique, Volume 4 (2003), pp. 611-619
[5] Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique, C. R. Physique, Volume 4 (2003), pp. 701-713
[6] (P. Michler, ed.), Single Quantum Dots: Fundamentals, Applications and New Concepts, Springer, Heidelberg, 2003
[7] Initial stages in the growth of 111-faceted CoCr2O4 clusters: mechanisms and strained nanometric pyramids, Appl. Phys. A, Volume 79 (2004) no. 1, pp. 93-97
[8] Multiferroic BaTiO3–CoFe2O4 nanostructures, Science, Volume 303 (2004), pp. 661-663
[9] Early self-assembled stages in epitaxial SrRuO3 on LaAlO3, Appl. Phys. Lett., Volume 82 (2003) no. 15, p. 2497
[10] Self-assembled magnetic nanostructures of CoPt3 with favoured chemical ordering, Europhys. Lett., Volume 56 (2001) no. 6, pp. 884-890
[11] Self-assembled magnetic nanostripes by organic patterning, Appl. Phys. Lett., Volume 84 (2004) no. 20, pp. 4038-4040
[12] Nucleation of ordered Ni islands arrays on Au(111) by surface-lattice dislocations, Phys. Rev. Lett., Volume 66 (1991) no. 13, pp. 1721-1724
[13] Island shapes and intermixing for submonolayer nickel on Au(111), Surf. Sci., Volume 420 (1999), pp. 53-64
[14] Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy, Phys. Rev. B, Volume 44 (1991) no. 18, pp. 10354-10357
[15] Confining barriers for surface state electrons tailored by monatomic Fe rows on vicinal Au(111) surfaces, Phys. Rev. Lett., Volume 92 (2004) no. 9, p. 096102
[16] Epitaxy controlled by self-assembled nanometer-scale structure, Phys. Rev. B, Volume 56 (1997) no. 11, pp. 6458-6461
[17] Fabricating nanometer-scale Co dots and line arrays on Cu(100) surfaces, Appl. Phys. Lett., Volume 76 (2000) no. 9, pp. 1128-1130
[18] STM study of preferencial growth of one-dimensional nickel islands on a Cu(110)––O surface, Appl. Surf. Sci., Volume 130–132 (1998), pp. 491-496
[19] Self-organized growth of Fe nanowire array on H2O/Si(100), Appl. Phys. Lett., Volume 75 (1999) no. 4, pp. 540-542
[20] Self-assembly of nanometer-scale magnetic dots with narrow size distributions on an insulating substrate, Phys. Rev. Lett., Volume 89 (2002) no. 23, p. 235502
[21] Magnetization process of a nanometer-scale cobalt dots array formed on a reconstructed Au(111) surface, J. Magn. Magn. Mater., Volume 165 (1997), pp. 38-41
[22] Self-organized mesoscopic magnetic structures, J. Appl. Phys., Volume 82 (1997) no. 11, pp. 5662-5669
[23] DyFe2(110) nanostructures: morphology and magnetic anisotropy, Appl. Phys. Lett., Volume 76 (2000) no. 11, pp. 1449-1451
[24] Magnetic nanostructures, Adv. Phys., Volume 47 (1998) no. 4, pp. 511-597
[25] Ordered magnetic nanostructures: fabrication and properties, J. Magn. Magn. Mater., Volume 256 (2003), pp. 449-501
[26] Nanomagnetics, J. Phys.: Cond. Mat., Volume 15 (2003), pp. R841-896
[27] Recent advances in nanomagnetism and spin electronics, J. Phys.: Cond. Mat., Volume 16 (2004), p. S471-S496
[28] Magnetism of free and supported metal clusters (S.N. Khanna; A.W. Castleman, eds.), Quantum Phenomena in Clusters and Nanostructures, Springer Series in Cluster Physics, Springer, Berlin, 2003, pp. 83-137
[29] Self-organized clusters and nanosize islands on metal surfaces (J.S. Miller; M. Drillon, eds.), Magnetism: Molecules to Materials III, Wiley–VCH, Weinheim, Germany, 2002, pp. 211-251
[30] Organometallic approach to nanoparticles synthesis and self-organization, C. R. Physique, Volume 6 (2003) no. 1
[31] Self-assembled epitaxial magnetic lateral structures on Ru: controlling the shape and placement, Phys. Rev. B, Volume 69 (2004), p. 184409
[32] Dipolar superferromagnetism in monolayer nanostripes of Fe(110) on vicinal W(110) surfaces, Phys. Rev. B, Volume 57 (1998) no. 2, p. R677
[33] Magnetism of step-decorated Fe on Pd(110), Phys. Rev. B, Volume 64 (2001), p. 144410
[34] Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev., Volume 65 (1944), pp. 117-149
[35] Magnetization and universal sub-critical behavior in two-dimensional XY magnets, J. Phys.: Cond. Mat., Volume 5 (1993), p. L53
[36] Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett., Volume 17 (1966), pp. 1133-1136
[37] Magnetometry of the ferromagnetic monolayer Fe(110) on W(110) coated with Ag, Phys. Rev. Lett., Volume 63 (1989), pp. 566-569
[38] Submonolayer magnetism of Fe(110) on W(110): finite width scaling of stripes and percolation between islands, Phys. Rev. Lett., Volume 73 (1994) no. 6, pp. 901-989
[39] Fabrication of magnetic quantum wires by step-flow growth of cobalt on copper surfaces, Appl. Phys. Lett., Volume 66 (1985) no. 8, pp. 1006-1008
[40] Magnetism in one dimension: Fe on Cu(111), Phys. Rev. B, Volume 56 (1997) no. 5, pp. 2340-2343
[41] Electronic states and magnetism of monoatomic Co and Cu wires, Phys. Rev. B, Volume 61 (2000) no. 8, p. R5133-R5136
[42] Magnetism in monatomic metal wires, J. Phys.: Cond. Mat., Volume 15 (2003), p. S2533-S2546
[43] Critical temperatures of Ising Lattice Films, Phys. Rev. B, Volume 1 (1970) no. 1, pp. 352-357
[44] Ferromagnetism in one-dimensional monoatomic metal chains, Nature, Volume 416 (2002), pp. 301-304
[45] The remarkable difference between surface and step atoms in the magnetic anisotropy of 2D nanostructures, Nat. Mater., Volume 2 (2003), p. 546
[46] N. Weiss, T. Cren, M. Epple, S. Rusponi, G. Baudot, V. Repain, S. Rousset, H. Brune, Magnetism of uniaxial ultra-high density Co superlattices on Au(788), in preparation
[47] Shape-dependent thermal switching behavior of superparamagnetic nanoislands, Phys. Rev. Lett., Volume 92 (2004) no. 6, p. 067201
[48] Influence des fluctuations thermiques sur l'aimantation de grains ferromagnétiques très fins, C. R. Acad. Sci., Volume 228 (1949), pp. 664-668
[49] Thermal fluctuations of a single-domain particle, Phys. Rev., Volume 130 (1963), p. 1677
[50] The low field susceptibility of a textured superparamagnetic system, J. Magn. Magn. Mater., Volume 53 (1985), pp. 199-207
[51] Vertical self-organization of epitaxial magnetic nanostructures, J. Magn. Magn. Mater., Volume 239 (2002), pp. 224-227
[52] Magnetic anisotropy from single atoms to large monodomain islands on a metal surface, C. R. Physique, Volume 6 (1986) no. 1
[53] Magnetostatic Principles in Ferromagnetism, North-Holland, Amsterdam, 1962
[54] Nucleation theory and domain states in multidomain magnetic material, Phys. Earth Planet. In., Volume 37 (1985), pp. 214-222
[55] Transition from zero-dimensional superparamagnetism to two-dimensional ferromagnetism of Co clusters on Au(111), Phys. Rev. B, Volume 59 (1999) no. 18, pp. 11887-11891
[56] Spin-polarized scanning tunnelling microscopy, Rev. Prog. Phys., Volume 66 (2003), pp. 523-582
[57] Classical and quantum magnetization reversal studies in nanometer-sized particles and clusters (I. Prigogine; S.A. Rice, eds.), Advances in Chemical Physics, vol. 118, Wiley, 2001, pp. 99-190
[58] Anisotropie magnétique superficielle et surstructures d'orientation, J. Phys. Rad., Volume 15 (1954), pp. 225-239
[59] Flat ferromagnetic epitaxial 48Ni/52Fe(111) films of few atomic layers, Phys. Status Solidi, Volume 27 (1968), p. 313
[60] Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers, Phys. Rev. B, Volume 39 (1989), pp. 865-868
[61] Microscopic origin of magnetic anisotropy in Au/Co/Au probed with X-ray magnetic circular dichroism, Phys. Rev. Lett., Volume 75 (1995) no. 20, pp. 3753-3755
[62] Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy, J. Magn. Magn. Mater., Volume 200 (1999), pp. 470-497
[63] Localized magnetic states of Fe, Co, and Ni impurities on Alkali Metal Films, Phys. Rev. Lett., Volume 88 (2002) no. 4, p. 047202
[64] Giant magnetic anisotropy of single cobalt atoms and nanoparticles, Science, Volume 300 (2003) no. 5622, pp. 1130-1133
[65] Spin and orbital magnetization in self-assembled Co clusters on Au(111), Phys. Rev. B, Volume 59 (1999) no. 2, p. R701-R704
[66] Direct determination of interfacial magnetic moments with a magnetic phase transition in Co nanoclusters on Au(111), Phys. Rev. Lett., Volume 87 (2001), p. 257201
[67] Magnetism of small Fe clusters on Au(111) studied by X-ray magnetic circular dichroism, Phys. Rev. B, Volume 64 (2001), p. 104429
[68] Magnetic moments in rough Fe surfaces, Europhys. Lett., Volume 20 (1992) no. 1, pp. 65-70
[69] Magnetic moments and anisotropies in smooth and rough surfaces and interfaces, J. Magn. Magn. Mater., Volume 165 (1997), pp. 56-61
[70] Oscillatory magnetic anisotropy in one-dimensional atomic wires, Phys. Rev. Lett., Volume 93 (2004) no. 7, p. 077203
[71] Nanowires and nanorings at the atomic level, Phys. Rev. Lett., Volume 91 (2004) no. 9, p. 096102
[72] Self-assembled lateral multilayers from thin film alloys of immiscible metals, Phys. Rev. Lett., Volume 81 (1998) no. 9
[73] Magnetoresistance of self-assembled lateral multilayers, Appl. Phys. Lett., Volume 77 (2000) no. 17, pp. 2728-2730
[74] Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, Volume 287 (2000), pp. 1989-1992
[75] Nano-patterning of magnetic anisotropy by controlled strain relief, Europhys. Lett., Volume 49 (2000), pp. 651-657
[76] Growth and magnetism of Fe nanostructures on W(001), Phys. Rev. B, Volume 68 (2003), p. 144416
[77] Direct observation of internal spin structure of magnetic vortex cores, Science, Volume 298 (2002), pp. 577-580
[78] Magnetic domains. The Analysis of Magnetic Microstructures, Springer, Berlin, 1999
[79] Spin-polarized scanning tunneling spectroscopy of nanoscale cobalt islands on Cu(111), Phys. Rev. Lett., Volume 92 (2004) no. 5, p. 057202
[80] Flux-closure-domain states and demagnetizing energy determination in sub-micron size magnetic dots, Europhys. Lett., Volume 63 (2003) no. 1, pp. 135-141
[81] Magnetic vortex core observation in circular dots of permalloy, Science, Volume 289 (2000), p. 930
[82] Geometrically constrained magnetic wall, Phys. Rev. Lett., Volume 83 (1999) no. 12, p. 2425
[83] Real-space observation of dipolar antiferromagnetism in magnetic nanowires by spin-polarized scanning tunneling spectroscopy, Phys. Rev. Lett., Volume 84 (2000) no. 22, pp. 5212-5215
[84] Analytical derivation of spin configuration and intrinsic coercive field of a narrow domain wall, Phys. Stat. Sol. B, Volume 59 (1973) no. 1, pp. 71-77
[85] Magnetism in ultrathin transition metal films (K.H.J. Buschow, ed.), Handbook of Magnetic Materials, vol. 7, Elsevier, North Holland, 1993, pp. 1-96 (Ch. 1)
[86] Analytical approach to the single-domain-to-vortex transition in small magnetic disks, Phys. Rev. B, Volume 70 (2004), p. 144402
[87] Direct observation of the single-domain limit of fe nanomagnets by spin-polarized scanning tunneling spectroscopy, Phys. Rev. Lett., Volume 91 (2003) no. 12, p. 127201
[88] Self-assembled growth of facetted epitaxial Fe(110) islands on Mo(110), Phys. Rev. B, Volume 64 (2001), p. 115419
[89] Thickness dependent magnetization states of Fe islands on W(110): from single domain to vortex and diamond patterns, Appl. Phys. Lett., Volume 84 (2004) no. 6, pp. 948-950
[90] H.F. Ding, A.K. Schmid, D. Li, K. Yu Guslienko, S.D. Bader, Magnetic bi-stability of Co nanodots, submitted for publication
[91] Angular-dependence of magnetization switching for a multi-domain dot: experiment and simulation, Phys. Rev. B Brief Report, Volume 70 (2004), p. 172409
[92] Nanoscale magnetic domains in mesoscopic magnets, Science, Volume 272 (1996), pp. 1782-1785
[93] Magnetic states of small cubic particles with uniaxial anisotropy, J. Magn. Magn. Mater., Volume 190 (1998), pp. 332-348
[94] O. Fruchart, R. Hertel, S. Cherifi, P.-O. Jubert, A. Locatelli, S. Heun, in preparation
[95] Nanometers-thick self-organized Fe stripes: bridging the gap between surfaces and magnetic materials, Appl. Phys. Lett., Volume 84 (2004) no. 8, pp. 1335-1337
[96] Three-dimensional stacking of self-assembled quantum dots in multilayer structures, C. R. Physique, Volume 6 (2005) no. 1
[97] Self-organized growth of nanosized vertical magnetic pillars on Au(111), Phys. Rev. Lett., Volume 83 (1999) no. 14, pp. 2769-2772
[98] Growth of self-organized nanosized Co pillars in Au(111) using an alternating deposition process, Appl. Surf. Sci., Volume 162–163 (2000), pp. 529-536
[99] Step-induced in-plane orbital anisotropy in FeNi films on Cu(111) probed by magnetic circular x-ray dichroism, Phys. Rev. B, Volume 64 (2001), p. 184405
[100] Growth of Tb(0001) on Nb and Mo(110) surfaces, Surf. Sci., Volume 506 (2002), pp. 235-242
[101] Properties of spin-valve structures deposited on step-bunched vicinal surfaces, J. Magn. Magn. Mater., Volume 198–199 (1999), pp. 15-17
[102] Self-ordering on crystal surfaces: fundamentals and applications, Mater. Sci. Engrg. B, Volume 96 (2002), pp. 169-177
[103] Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires, Phys. Rev. Lett., Volume 91 (2003) no. 16, p. 167207
[104] Self-organization of nanostructures in semiconductor heteroepitaxy, Phys. Rep., Volume 365 (2002), pp. 335-432
[105] Magnetic nanowires on faceted sapphire surfaces, Thin Solid Films, Volume 449 (2004), pp. 207-214
[106] B. Borca, C. Meyer, O. Fruchart, unpublished data
[107] Lateral nanoscale Fe–Ir superlattices on Ir(100), Europhys. Lett., Volume 65 (2004) no. 6, pp. 830-836
[108] Perpendicular magnetic anisotropy in CoPt3(111) films grown on a low energy surface at room temperature, J. Appl. Phys., Volume 91 (2002) no. 10, pp. 8153-8155
[109] Self-organized, ordered array of coherent orthogonal column nanostructures in epitaxial La0.8Sr0.2MnO3 thin films, Appl. Phys. Lett., Volume 80 (2002) no. 25, p. 4831
[110] Ordered growth of cobalt nanostructures on a Au(111) vicinal surface: nucleation mechanisms and temperature behavior, Mater. Sci. Engrg. B, Volume 96 (2002), pp. 178-187
[111] Nanometric artificial structuration of semiconductor surfaces for crystalline growth, C. R. Physique, Volume 6 (2005) no. 1
[112] Alignment of self-assembled magnetic nanostructures: Co dot chains and stripes on grooved Ru(0001), Appl. Phys. Lett., Volume 79 (2001) no. 23, p. 3848
Cited by Sources:
Comments - Policy