Comptes Rendus
X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures
Comptes Rendus. Physique, Volume 6 (2005) no. 1, pp. 47-59.

Méthodes de rayons X pour l'analyse des déformations et des compositions des nano-structures semi-conductrices auto-organisées. La fabrication de nanostructures de basse dimension (par exemple, fils et boîtes quantiques) est actuellement un des défis les plus passionnants de la technologie des semi-conducteurs. Les propriétés optiques et électroniques de ces systèmes dépendent de façon décisive de paramètres structuraux tels que la taille, la forme, les contraintes élastiques, la composition chimique et les corrélations de position entre les nanostructures. Les méthodes de diffusion des rayons X se sont révélées parfaitement adaptées à l'obtention de ces paramètres. En plus de leur sensibilité aux déformations du réseau cristallin, elles renseignent sur les fluctuations de la morphologie des surfaces et interfaces à une échelle spatiale allant de 0.1 nm jusqu'à plusieurs micromètres. Les petites dimensions et le faible signal de diffusion correspondant nécessitent l'utilisation de rayonnement synchrotron extrêmement brillant. Les développements méthodologiques récents et leur application au système Ge sur Si sont discutés.

The fabrication of low-dimensional nanostructures (e.g. quantum wires or quantum dots) is presently among the most exciting challenges in semiconductor technology. The electronic and optical properties of these systems depend decisively on structural parameters, such as size, shape, elastic strain, chemical composition and positional correlation among the nanostructures. X-ray scattering methods have proven to be an excellent tool to get access to these parameters. Beyond its sensitivity to deformations of the crystal lattice, it is sensitive to fluctuations of the surface and interface morphology on length scales ranging from 0.1 nm up to several μm. The small dimensions and the corresponding weak scattering signal require the use of highly brilliant synchrotron radiation. Recent methodological developments and their application to the material system Ge on Si are discussed.

Publié le :
DOI : 10.1016/j.crhy.2004.11.002
Keywords: Nanostructures, Self-organization, X-ray scattering, Semiconductors, Synchrotron radiation, Anomalous scattering, Finite element
Mots clés : Nanostructures, Auto-organisation, Diffusion des rayons X, Semi-conducteurs, Rayonnement synchrotron, Diffusion anomale, Éléments finis
Till Hartmut Metzger 1 ; Tobias Urs Schülli 1, 2 ; Martin Schmidbauer 3

1 ESRF, BP 220, 6, rue Jules Horowitz, 38043 Grenoble cedex, France
2 CEA DRFMC/SP2M, 17, rue des Martyrs, 38054 Grenoble cedex 9, France
3 Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin, Germany
@article{CRPHYS_2005__6_1_47_0,
     author = {Till Hartmut Metzger and Tobias Urs Sch\"ulli and Martin Schmidbauer},
     title = {X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures},
     journal = {Comptes Rendus. Physique},
     pages = {47--59},
     publisher = {Elsevier},
     volume = {6},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crhy.2004.11.002},
     language = {en},
}
TY  - JOUR
AU  - Till Hartmut Metzger
AU  - Tobias Urs Schülli
AU  - Martin Schmidbauer
TI  - X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 47
EP  - 59
VL  - 6
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.11.002
LA  - en
ID  - CRPHYS_2005__6_1_47_0
ER  - 
%0 Journal Article
%A Till Hartmut Metzger
%A Tobias Urs Schülli
%A Martin Schmidbauer
%T X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures
%J Comptes Rendus. Physique
%D 2005
%P 47-59
%V 6
%N 1
%I Elsevier
%R 10.1016/j.crhy.2004.11.002
%G en
%F CRPHYS_2005__6_1_47_0
Till Hartmut Metzger; Tobias Urs Schülli; Martin Schmidbauer. X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures. Comptes Rendus. Physique, Volume 6 (2005) no. 1, pp. 47-59. doi : 10.1016/j.crhy.2004.11.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.002/

[1] P.M. Petroff; A. Lorke; A. Imamoglou Epitaxially self-assembled quantum dots, Phys. Today, Volume 5 (2001), p. 46

[2] Y. Arakawa; H. Sakaki Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett., Volume 40 (1982), p. 939

[3] F. Klopf; J.P. Reithmayer; A. Forchel Highly efficient GaInAs/(Al)GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers, Appl. Phys. Lett., Volume 77 (2000), p. 1419

[4] D. Bimberg; M. Grundmann; N.N. Ledentsov Quantum Dot Heterostructures, Wiley, New York, 1999

[5] M. Grundmann Nano-Optoelectronics, Springer, Berlin, 2002

[6] V. Shchukin; N.N. Ledentsov; D. Bimberg Epitaxy of Nanostructures, Springer, Berlin, 2003

[7] I.N. Stranski; L. Krastanow Sitzungsber. Akad. Wiss. Wien, Abt. IIb, 146 (1937), p. 797

[8] D.J. Eaglesham; M. Cerullo Dislocation-free Stranski–Krastanow growth of Ge on Si(100), Phys. Rev. Lett., Volume 64 (1990), p. 1943

[9] Y.-W. Mo; D.E. Savage; B.S. Swartzentruber; M.G. Lagally Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001), Phys. Rev. Lett., Volume 65 (1990), p. 1020

[10] J. Tersoff; F.K. LeGoues Competing relaxation mechanisms in strained layers, Phys. Rev. Lett., Volume 72 (1994), p. 3570

[11] N. Moll; M. Scheffler; E. Pehlke Influence of surface stress on the equilibrium shape of strained quantum dots, Phys. Rev. B, Volume 58 (1998), p. 4566

[12] E. Pehlke; N. Moll; A. Kley; M. Scheffler Shape and stability of quantum dots, Appl. Phys. A, Volume 65 (1997), p. 525

[13] L.G. Wang; P. Kratzer; N. Moll; M. Scheffler Size, shape, and stability of InAs quantum dots on the GaAs(001) substrate, Phys. Rev. B, Volume 62 (2000), p. 1897

[14] L.G. Wang; P. Kratzer; M. Scheffler; N. Moll Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy, Phys. Rev. Lett., Volume 82 (1999), p. 4042

[15] Q.K.K. Liu; N. Moll; M. Scheffler; E. Pehlke Equilibrium shapes and energies of coherent strained InP islands, Phys. Rev. B, Volume 60 (1999), p. 17008

[16] J. Tersoff; R.M. Tromp Shape transition in growth of strained islands: spontaneous formation of quantum wires, Phys. Rev. Lett., Volume 70 (1993), p. 2782

[17] D.B. Williams; C.B. Carter Transmission Electron Microscopy – A Textbook for Materials Science, Plenum Press, New York, 1996

[18] H. Eisele; O. Flebbe; T. Kalka; C. Preinesberger; F. Heinrichsdorff; A. Krost; D. Bimberg; M. Dähne-Prietsch Cross-sectional scanning-tunneling microscopy of stacked InAs quantum dots, Appl. Phys. Lett., Volume 75 (1999), p. 106

[19] J.J. Hren; J.I. Goldstein Introduction to Analytical Electron Microscopy, Plenum Press, New York, 1979

[20] L. Reimer Energy-Filtering Transmission Electron Microscopy, Springer, Berlin, 1995

[21] R.F. Egerton Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum Press, New York, 1996

[22] R. Schneider Electron Energy Loss Spectroscopy (EELS), Surface and Thin Film Analysis, Wiley-VCH, 2002, p. 50

[23] R. Schneider Energy-dispersive X-ray spectroscopy (EDXS), Surface and Thin Film Analysis, Wiley-VCH, 2002, p. 194

[24] G.H. Vineyard Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces, Phys. Rev. B, Volume 26 (1982), p. 4146

[25] I. Kegel; T.H. Metzger; A. Lorke; J. Peisl; J. Stangl; G. Bauer; J.M. Garcia; P.M. Petroff Nanometer-scale resolution of strain and interdiffusion in self-assembled InAs/GaAs quantum dots, Phys. Rev. Lett., Volume 85 (2000), p. 1694

[26] I. Kegel; T.H. Metzger; A. Lorke; J. Peisl; J. Stangl; G. Bauer; K. Nordlund; W.V. Schoenfeld; P.M. Petroff Determination of strain fields and composition of self-organized quantum dots using X-ray diffraction, Phys. Rev. B, Volume 63 (2001), p. 035318

[27] M. Schmidbauer; M. Hanke; H. Raidt; R. Köhler; H. Wawra Strain and composition in SiGe nanoscale islands studied by X-ray scattering, Phys. Rev. B, Volume 61 (2000), p. 5571

[28] S.K. Sinha; E.B. Sirota; S. Garoff; H.B. Stanley X-ray and neutron scattering from rough surfaces, Phys. Rev. B, Volume 38 (1988), p. 2297

[29] T. Salditt; T.H. Metzger; J. Peisl Kinetic roughness of amorphous multilayers studied by diffuse X-ray scattering, Phys. Rev. Lett., Volume 73 (1994), p. 2228

[30] A.J. Steinfort; P.M.L.O. Scholte; A. Ettema; F. Tuinstra; M. Nielsen; E. Landemark; D.-M. Smilgies; R. Feidenhans'l; G. Falkenberg; L. Seehofer; R.L. Johnson Strain in nanoscale germanium hut clusters on Si(001) studied by X-ray diffraction, Phys. Rev. Lett., Volume 77 (1996), p. 2009

[31] G. Springholz; V. Holý; M. Pinczolits; G. Bauer Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant, Science, Volume 282 (1998), p. 734

[32] A.A. Darhuber; J. Zhu; V. Holý; J. Stangl; P. Mikulík; K. Brunner; G. Abstreiter; G. Bauer Highly regular self-organization of step bunches during growth of SiGe on Si(113), Appl. Phys. Lett., Volume 73 (1998), p. 1535

[33] M. Rauscher; R. Paniago; H. Metzger; Z. Kovats; J. Domke; J. Peisl; H.-D. Pfannes; J. Schulze; I. Eisele Grazing incidence small angle X-ray scattering from free-standing nanostructures, J. Appl. Phys., Volume 86 (1999), p. 6763

[34] V. Holý; U. Pietsch; T. Baumbach; U. Pietsch; V. Holý; T. Baumbach High Resolution X-Ray Scattering from Thin Films and Multilayers, Springer Tracts Modern Phys.High-Resolution X-Ray Scattering From Thin Films to Lateral Nanostructures, Advanced Texts in Physics, vol. 149, Springer, Berlin, 1999

[35] J. Grenzer; N. Darowski; U. Pietsch; A. Daniel; S. Rennon; J.P. Reithmaier; A. Forchel Grazing-incidence diffraction strain analysis of a laterally-modulated multiquantum well system produced by focused-ion-beam implantation, Appl. Phys. Lett., Volume 77 (2000), p. 4277

[36] J. Stangl; A. Daniel; V. Holý; T. Roch; G. Bauer; I. Kegel; T.H. Metzger; Th. Wiebach; Th. Schmidt; O.G. Eberl Strain and composition distribution in uncapped SiGe islands from X-ray diffraction, Appl. Phys. Lett., Volume 79 (2001), p. 1474

[37] R. Lazzari IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis of supported islands, J. Appl. Cryst., Volume 35 (2002), p. 406

[38] I.A. Vartanyants; I.K. Robinson Imaging of quantum array structures with coherent and partially coherent diffraction, J. Synchr. Rad., Volume 10 (2003), p. 409

[39] M. Schmidbauer X-Ray Diffuse Scattering from Self-Organized Mesoscopic Semiconductor Structures, Springer Tracts Modern Phys., vol. 199, Springer, Berlin, 2004

[40] T.U. Schülli; R.T. Lechner; J. Stangl; G. Springholz; G. Bauer; M. Sztucki; T.H. Metzger Strain determination in multilayers by complementary anomalous X-ray diffraction, Phys. Rev. B, Volume 69 (2004), p. 195307

[41] J. Stangl; A. Hesse; T. Roch; V. Holy; G. Bauer; T. Schuelli; T.H. Metzger Structural investigation of semiconductor nanostructures by X-ray techniques, Nuclear Instrum. Methods Phys. Res. B, Volume 200 (2003), p. 11

[42] J. Stangl; V. Holy; G. Bauer Structural properties of self-organized semiconductor nanostructures, Rev. Mod. Phys., Volume 76 (2004), p. 725

[43] D. De Salvador; M. Tormen; M. Berti; A.V. Drigo; F. Romanato; F. Boscherini; J. Stangl; S. Zerlauth; G. Bauer; L. Colombo; S. Mobilio Local lattice distortion in Si1−xyGexCy epitaxial layers from X-ray absorption fine structure, Phys. Rev. B, Volume 63 (2001), p. 045314

[44] I.A. Blech; E. Meieran Enhanced X-ray diffraction from substrate crystals containing discontinuous surface films, J. Appl. Phys., Volume 38 (1967), p. 2913

[45] Q. Shen; S. Kycia Determination of interfacial strain distribution in quantum-wire structures by synchrotron X-ray scattering, Phys. Rev. B, Volume 55 (1997), p. 15791

[46] V.M. Kaganer; K.H. Ploog Energies of strained vicinal surfaces and strained islands, Phys. Rev. B, Volume 64 (2001), p. 205301

[47] S. Christiansen; M. Albrecht; H.P. Strunk; H.J. Maier Strained state of Ge(Si) islands on Si: finite element calculations and comparison to convergent beam electron-diffraction measurements, Appl. Phys. Lett., Volume 64 (1994), p. 3617

[48] M. Grundmann; O. Stier; D. Bimberg InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure, Phys. Rev. B, Volume 52 (1995), p. 11969

[49] C. Pryor; J. Kim; L.W. Wang; A.J. Williamson; A. Zunger Comparison of two methods for describing the strain profiles in quantum dots, J. Appl. Phys., Volume 83 (1998), p. 2548

[50] F. Buda; J. Kohanoff; M. Parinello Optical properties of porous silicon: a first-principles study, Phys. Rev. Lett., Volume 69 (1992), p. 1272

[51] I. Kegel; T.H. Metzger; J. Peisl; J. Stangl; G. Bauer; D. Smilgies Vertical alignment of multilayered quantum dots studied by X-ray grazing-incidence diffraction, Phys. Rev. B, Volume 60 (1999), p. 2516

[52] T. Schülli; M. Sztucki; V. Chamard; T.H. Metzger; D. Schuh Anomalous X-ray diffraction from InAs/GaAs quantum dot systems, Appl. Phys. Lett., Volume 81 (2002), p. 448

[53] T.U. Schülli; J. Stangl; Z. Zhong; R.T. Lechner; M. Sztucki; T.H. Metzger; G. Bauer Direct determination of strain and composition profiles in SiGe islands by anomalous X-ray diffraction at high momentum transfer, Phys. Rev. Lett., Volume 90 (2003), p. 066105

[54] A. Malachias; S. Kycia; G. Medeiros-Ribeiro; R. Magalhaes-Paniago; T.I. Kamins; R. Stanley Williams 3D composition of epitaxial nanocrystals by anomalous X-ray diffraction: observation of a Si-rich core in Ge domes on Si(100), Phys. Rev. Lett., Volume 91 (2003), p. 176101

[55] R. Magalhaes-Paniago; G. Meideros-Ribeiro; A. Malachias; S. Kycia; T.I. Kamins; R. Stanley Williams Direct evaluation of composition profile, strain relaxation, and elastic energy of Ge:Si(001) self-assembled islands by anomalous X-ray scattering, Phys. Rev. B, Volume 66 (2002), p. 245312

[56] W. Dorsch; S. Christiansen; M. Albrecht; P.O. Hansson; E. Bauser; H.P. Strunk Early growth stages of Ge0.85Si0.15 on Si(001) from Bi solution, Surf. Sci., Volume 331–333 (1995), p. 896

[57] E. Bauser Crystal Growth of Electronic Materials, Elsevier Science, 1985, p. 41

[58] M. Hanke; M. Schmidbauer; D. Grigoriev; H. Raidt; P. Schäfer; R. Köhler; A.-K. Gerlitzke; H. Wawra SiGe/Si(001) Stranski–Krastanow islands by liquid-phase epitaxy: diffuse X-ray scattering versus growth observations, Phys. Rev. B, Volume 69 (2004), p. 075317

[59] I. Kegel; T.H. Metzger; P. Fratzl; J. Peisl; A. Lorke; J.M. Garcia; P.M. Petroff Interdependence of strain and shape in self-assembled coherent InAs islands on GaAs, Europhys. Lett., Volume 45 (1999), p. 222

[60] S. Grenier; M.G. Proietti; J.M. Garcia; J. Garcia Grazing-incidence diffraction anomalous fine structure of InAs/InP(001) self-assembled quantum wires, Europhys. Lett., Volume 57 (2002) no. 4, p. 499

[61] V. Chamard; T.H. Metzger; E. Bellet-Amalric; B. Daudin; C. Adelmann; H. Mariette; G. Mula Structure and ordering of GaN quantum dot multilayers, Appl. Phys. Lett., Volume 79 (2001), p. 1971

[62] V. Chamard; T.H. Metzger; M. Sztucki; V. Holý; M. Tolan; E. Bellet-Amalric; C. Adelmann; B. Daudin; H. Mariette On the driving forces for the vertical alignment in nitride quantum dot multilayers, Europhys. Lett., Volume 63 (2003), p. 268

[63] V. Chamard; T. Schülli; M. Sztucki; T.H. Metzger; E. Sarigiannidou; J.-L. Rouviere; M. Tolan; C. Adelmann; B. Daudin Strain distribution in nitride quantum dot multilayers, Phys. Rev. B, Volume 69 (2004), p. 125327

[64] M. Schmidbauer; F. Hatami; M. Hanke; P. Schäfer; K. Braune; W.T. Masselink; R. Köhler; M. Ramsteiner Shape-mediated anisotropic strain in self-assembled InP/In0.48Ga0.52P quantum dots, Phys. Rev. B, Volume 65 (2002), p. 125320

[65] R.T. Lechner; T.U. Schülli; V. Holý; G. Springholz; J. Stangl; A. Raab; G. Bauer; T.H. Metzger Ordering parameters of self-organized three-dimensional quantum-dot lattices determined from anomalous X-ray, Appl. Phys. Lett., Volume 84 (2004), p. 885

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Self-organization on surfaces: foreword

Olivier Fruchart

C. R. Phys (2005)


Nanometric artificial structuring of semiconductor surfaces for crystalline growth

J. Eymery; G. Biasiol; E. Kapon; ...

C. R. Phys (2005)


Formation of self-assembled quantum dots induced by the Stranski–Krastanow transition: a comparison of various semiconductor systems

Henri Mariette

C. R. Phys (2005)