The fabrication of low-dimensional nanostructures (e.g. quantum wires or quantum dots) is presently among the most exciting challenges in semiconductor technology. The electronic and optical properties of these systems depend decisively on structural parameters, such as size, shape, elastic strain, chemical composition and positional correlation among the nanostructures. X-ray scattering methods have proven to be an excellent tool to get access to these parameters. Beyond its sensitivity to deformations of the crystal lattice, it is sensitive to fluctuations of the surface and interface morphology on length scales ranging from 0.1 nm up to several μm. The small dimensions and the corresponding weak scattering signal require the use of highly brilliant synchrotron radiation. Recent methodological developments and their application to the material system Ge on Si are discussed.
Méthodes de rayons X pour l'analyse des déformations et des compositions des nano-structures semi-conductrices auto-organisées. La fabrication de nanostructures de basse dimension (par exemple, fils et boîtes quantiques) est actuellement un des défis les plus passionnants de la technologie des semi-conducteurs. Les propriétés optiques et électroniques de ces systèmes dépendent de façon décisive de paramètres structuraux tels que la taille, la forme, les contraintes élastiques, la composition chimique et les corrélations de position entre les nanostructures. Les méthodes de diffusion des rayons X se sont révélées parfaitement adaptées à l'obtention de ces paramètres. En plus de leur sensibilité aux déformations du réseau cristallin, elles renseignent sur les fluctuations de la morphologie des surfaces et interfaces à une échelle spatiale allant de 0.1 nm jusqu'à plusieurs micromètres. Les petites dimensions et le faible signal de diffusion correspondant nécessitent l'utilisation de rayonnement synchrotron extrêmement brillant. Les développements méthodologiques récents et leur application au système Ge sur Si sont discutés.
Keywords: Nanostructures, Auto-organisation, Diffusion des rayons X, Semi-conducteurs, Rayonnement synchrotron, Diffusion anomale, Éléments finis
Till Hartmut Metzger 1; Tobias Urs Schülli 1, 2; Martin Schmidbauer 3
@article{CRPHYS_2005__6_1_47_0, author = {Till Hartmut Metzger and Tobias Urs Sch\"ulli and Martin Schmidbauer}, title = {X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures}, journal = {Comptes Rendus. Physique}, pages = {47--59}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.002}, language = {en}, }
TY - JOUR AU - Till Hartmut Metzger AU - Tobias Urs Schülli AU - Martin Schmidbauer TI - X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures JO - Comptes Rendus. Physique PY - 2005 SP - 47 EP - 59 VL - 6 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2004.11.002 LA - en ID - CRPHYS_2005__6_1_47_0 ER -
%0 Journal Article %A Till Hartmut Metzger %A Tobias Urs Schülli %A Martin Schmidbauer %T X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures %J Comptes Rendus. Physique %D 2005 %P 47-59 %V 6 %N 1 %I Elsevier %R 10.1016/j.crhy.2004.11.002 %G en %F CRPHYS_2005__6_1_47_0
Till Hartmut Metzger; Tobias Urs Schülli; Martin Schmidbauer. X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 47-59. doi : 10.1016/j.crhy.2004.11.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.002/
[1] Epitaxially self-assembled quantum dots, Phys. Today, Volume 5 (2001), p. 46
[2] Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett., Volume 40 (1982), p. 939
[3] Highly efficient GaInAs/(Al)GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers, Appl. Phys. Lett., Volume 77 (2000), p. 1419
[4] Quantum Dot Heterostructures, Wiley, New York, 1999
[5] Nano-Optoelectronics, Springer, Berlin, 2002
[6] Epitaxy of Nanostructures, Springer, Berlin, 2003
[7] Sitzungsber. Akad. Wiss. Wien, Abt. IIb, 146 (1937), p. 797
[8] Dislocation-free Stranski–Krastanow growth of Ge on Si(100), Phys. Rev. Lett., Volume 64 (1990), p. 1943
[9] Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001), Phys. Rev. Lett., Volume 65 (1990), p. 1020
[10] Competing relaxation mechanisms in strained layers, Phys. Rev. Lett., Volume 72 (1994), p. 3570
[11] Influence of surface stress on the equilibrium shape of strained quantum dots, Phys. Rev. B, Volume 58 (1998), p. 4566
[12] Shape and stability of quantum dots, Appl. Phys. A, Volume 65 (1997), p. 525
[13] Size, shape, and stability of InAs quantum dots on the GaAs(001) substrate, Phys. Rev. B, Volume 62 (2000), p. 1897
[14] Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy, Phys. Rev. Lett., Volume 82 (1999), p. 4042
[15] Equilibrium shapes and energies of coherent strained InP islands, Phys. Rev. B, Volume 60 (1999), p. 17008
[16] Shape transition in growth of strained islands: spontaneous formation of quantum wires, Phys. Rev. Lett., Volume 70 (1993), p. 2782
[17] Transmission Electron Microscopy – A Textbook for Materials Science, Plenum Press, New York, 1996
[18] Cross-sectional scanning-tunneling microscopy of stacked InAs quantum dots, Appl. Phys. Lett., Volume 75 (1999), p. 106
[19] Introduction to Analytical Electron Microscopy, Plenum Press, New York, 1979
[20] Energy-Filtering Transmission Electron Microscopy, Springer, Berlin, 1995
[21] Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum Press, New York, 1996
[22] Electron Energy Loss Spectroscopy (EELS), Surface and Thin Film Analysis, Wiley-VCH, 2002, p. 50
[23] Energy-dispersive X-ray spectroscopy (EDXS), Surface and Thin Film Analysis, Wiley-VCH, 2002, p. 194
[24] Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces, Phys. Rev. B, Volume 26 (1982), p. 4146
[25] Nanometer-scale resolution of strain and interdiffusion in self-assembled InAs/GaAs quantum dots, Phys. Rev. Lett., Volume 85 (2000), p. 1694
[26] Determination of strain fields and composition of self-organized quantum dots using X-ray diffraction, Phys. Rev. B, Volume 63 (2001), p. 035318
[27] Strain and composition in SiGe nanoscale islands studied by X-ray scattering, Phys. Rev. B, Volume 61 (2000), p. 5571
[28] X-ray and neutron scattering from rough surfaces, Phys. Rev. B, Volume 38 (1988), p. 2297
[29] Kinetic roughness of amorphous multilayers studied by diffuse X-ray scattering, Phys. Rev. Lett., Volume 73 (1994), p. 2228
[30] Strain in nanoscale germanium hut clusters on Si(001) studied by X-ray diffraction, Phys. Rev. Lett., Volume 77 (1996), p. 2009
[31] Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant, Science, Volume 282 (1998), p. 734
[32] Highly regular self-organization of step bunches during growth of SiGe on Si(113), Appl. Phys. Lett., Volume 73 (1998), p. 1535
[33] Grazing incidence small angle X-ray scattering from free-standing nanostructures, J. Appl. Phys., Volume 86 (1999), p. 6763
[34] High Resolution X-Ray Scattering from Thin Films and Multilayers, Springer Tracts Modern Phys.High-Resolution X-Ray Scattering From Thin Films to Lateral Nanostructures, Advanced Texts in Physics, vol. 149, Springer, Berlin, 1999
[35] Grazing-incidence diffraction strain analysis of a laterally-modulated multiquantum well system produced by focused-ion-beam implantation, Appl. Phys. Lett., Volume 77 (2000), p. 4277
[36] Strain and composition distribution in uncapped SiGe islands from X-ray diffraction, Appl. Phys. Lett., Volume 79 (2001), p. 1474
[37] IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis of supported islands, J. Appl. Cryst., Volume 35 (2002), p. 406
[38] Imaging of quantum array structures with coherent and partially coherent diffraction, J. Synchr. Rad., Volume 10 (2003), p. 409
[39] X-Ray Diffuse Scattering from Self-Organized Mesoscopic Semiconductor Structures, Springer Tracts Modern Phys., vol. 199, Springer, Berlin, 2004
[40] Strain determination in multilayers by complementary anomalous X-ray diffraction, Phys. Rev. B, Volume 69 (2004), p. 195307
[41] Structural investigation of semiconductor nanostructures by X-ray techniques, Nuclear Instrum. Methods Phys. Res. B, Volume 200 (2003), p. 11
[42] Structural properties of self-organized semiconductor nanostructures, Rev. Mod. Phys., Volume 76 (2004), p. 725
[43] Local lattice distortion in Si1−x−yGexCy epitaxial layers from X-ray absorption fine structure, Phys. Rev. B, Volume 63 (2001), p. 045314
[44] Enhanced X-ray diffraction from substrate crystals containing discontinuous surface films, J. Appl. Phys., Volume 38 (1967), p. 2913
[45] Determination of interfacial strain distribution in quantum-wire structures by synchrotron X-ray scattering, Phys. Rev. B, Volume 55 (1997), p. 15791
[46] Energies of strained vicinal surfaces and strained islands, Phys. Rev. B, Volume 64 (2001), p. 205301
[47] Strained state of Ge(Si) islands on Si: finite element calculations and comparison to convergent beam electron-diffraction measurements, Appl. Phys. Lett., Volume 64 (1994), p. 3617
[48] InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure, Phys. Rev. B, Volume 52 (1995), p. 11969
[49] Comparison of two methods for describing the strain profiles in quantum dots, J. Appl. Phys., Volume 83 (1998), p. 2548
[50] Optical properties of porous silicon: a first-principles study, Phys. Rev. Lett., Volume 69 (1992), p. 1272
[51] Vertical alignment of multilayered quantum dots studied by X-ray grazing-incidence diffraction, Phys. Rev. B, Volume 60 (1999), p. 2516
[52] Anomalous X-ray diffraction from InAs/GaAs quantum dot systems, Appl. Phys. Lett., Volume 81 (2002), p. 448
[53] Direct determination of strain and composition profiles in SiGe islands by anomalous X-ray diffraction at high momentum transfer, Phys. Rev. Lett., Volume 90 (2003), p. 066105
[54] 3D composition of epitaxial nanocrystals by anomalous X-ray diffraction: observation of a Si-rich core in Ge domes on Si(100), Phys. Rev. Lett., Volume 91 (2003), p. 176101
[55] Direct evaluation of composition profile, strain relaxation, and elastic energy of Ge:Si(001) self-assembled islands by anomalous X-ray scattering, Phys. Rev. B, Volume 66 (2002), p. 245312
[56] Early growth stages of Ge0.85Si0.15 on Si(001) from Bi solution, Surf. Sci., Volume 331–333 (1995), p. 896
[57] Crystal Growth of Electronic Materials, Elsevier Science, 1985, p. 41
[58] SiGe/Si(001) Stranski–Krastanow islands by liquid-phase epitaxy: diffuse X-ray scattering versus growth observations, Phys. Rev. B, Volume 69 (2004), p. 075317
[59] Interdependence of strain and shape in self-assembled coherent InAs islands on GaAs, Europhys. Lett., Volume 45 (1999), p. 222
[60] Grazing-incidence diffraction anomalous fine structure of InAs/InP(001) self-assembled quantum wires, Europhys. Lett., Volume 57 (2002) no. 4, p. 499
[61] Structure and ordering of GaN quantum dot multilayers, Appl. Phys. Lett., Volume 79 (2001), p. 1971
[62] On the driving forces for the vertical alignment in nitride quantum dot multilayers, Europhys. Lett., Volume 63 (2003), p. 268
[63] Strain distribution in nitride quantum dot multilayers, Phys. Rev. B, Volume 69 (2004), p. 125327
[64] Shape-mediated anisotropic strain in self-assembled InP/In0.48Ga0.52P quantum dots, Phys. Rev. B, Volume 65 (2002), p. 125320
[65] Ordering parameters of self-organized three-dimensional quantum-dot lattices determined from anomalous X-ray, Appl. Phys. Lett., Volume 84 (2004), p. 885
Cited by Sources:
Comments - Policy