After decades of work, the growth of continuous thin films, i.e., two-dimensional structures, is progressively becoming a technological issue more than a field of fundamental research. Incidentally self-organization of nanostructures on surfaces is now an important field of research, i.e., structures of dimensionality one or zero, with a steep rise of attention in the past five years. Whereas self-organization was initially motivated by potential applications, it has up to now essentially contributed to the advancement of fundamental science in low dimensions, as model systems could be produced that could not have been fabricated by lithography. This Special Issue aims at giving a cross-community timely overview of the field. The Issue gathers a broad panel of articles covering various self-organization mechanisms, specific structural characterization, physical properties, and current trends in extending the versatility of growth. The materials mostly covered here are semiconductors and magnetic materials.
Auto-organisation sur les surfaces : préface. Après plusieurs décennies d'intense activité, la croissance des couches minces, c'est-à-dire de systèmes de dimension deux, tend progressivement à devenir plus une question de maîtrise technologique qu'un sujet de recherche fondamentale. Dans le même temps l'auto-organisation aux surfaces de nanostructures, c'est-à-dire de dimensionnalité un voire zéro, prend une importance grandissante, tout spécialement depuis cinq ans. Alors que l'auto-organisation était initialement motivée par des perspectives d'applications, elle a pour l'instant essentiellement contribué à l'acquisition de nouvelles connaissances de physique fondamentale en basse dimension, puisque des systèmes modèles ont pu être fabriqués, qui n'auraient pu être obtenus par la technique conventionnelle de structuration qu'est la lithographie. Ce dossier thématique a pour objectif de proposer un aperçu actuel de l'auto-organisation, en essayant de dépasser les frontières de communautés. Ainsi sont rassemblées des contributions traitant de divers mécanismes physiques de l'auto-organisation, de techniques de caractérisation spécifiques, de propriétés physiques, et des nouvelles approches poursuivies pour augmenter la versatilité des procédés de croissance. Les matériaux couverts ici sont essentiellement les semiconducteurs et les matériaux magnétiques.
Keywords: Auto-organisation, Auto-assemblage, Bottom-up, Basse dimensionnalité, Plots, Fils, Nanostructures
Olivier Fruchart 1
@article{CRPHYS_2005__6_1_3_0, author = {Olivier Fruchart}, title = {Self-organization on surfaces: foreword}, journal = {Comptes Rendus. Physique}, pages = {3--9}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.009}, language = {en}, }
Olivier Fruchart. Self-organization on surfaces: foreword. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 3-9. doi : 10.1016/j.crhy.2004.11.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.009/
[1] Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Let., Volume 40 (1982), pp. 939-941
[2] Gain and the threshold of three dimensional quantum-box lasers, IEEE J. Quantum Elect., Volume 22 (1986), pp. 1915-1921
[3] Microscopic view of epitaxial growth: nucleation and aggregation, Appl. Phys., Volume 31 (1998), pp. 121-229
[4] Growth, structure and morphology of supported metal clusters studied by surface science techniques, Cryst. Res. Technol., Volume 33 (1998), pp. 1119-1140
[5] Self-organization of nanostructures in semiconductor heteroepitaxy, Phys. Rep., Volume 365 (2002), pp. 335-432
[6] Self-ordering on crystal surfaces: fundamentals and applications, Mater. Sci. Engrg., Volume 96 (2002), pp. 169-177
[7] Spontaneous ordering of nanostructures on crystal surfaces, Rev. Mod. Phys., Volume 71 (1999) no. 4, pp. 1125-1171
[8] Thermodynamics of nucleation and growth, Surf. Rev. Lett., Volume 9 (2002) no. 3–4, pp. 1565-1593
[9] Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films, Phys. Rev. Lett., Volume 88 (2002) no. 4, p. 047202
[10] Giant magnetic anisotropy of single cobalt atoms and nanoparticles, Science, Volume 300 (2003) no. 5622, pp. 1130-1133
[11] Steps on surfaces, C. R. Physique, Volume 6 (2005) no. 1 | DOI
[12] Philos. Trans. Roy. Soc. London Ser. A, 243 (1951), p. 299
[13] Keimbildung in übersättigten Gebilden, Z. Physik. Chem., Volume 119 (1926), pp. 277-301
[14] Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinender, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl. IIb (1938), p. 146
[15] Proc. Roy. Soc. London Ser. A, 198 (1949), p. 216
[16] Phänomenologische Theorie der Kristallabscheidung an Oberflächen, Int. Zeit. Kristallogr., Volume 110 (1958), pp. 372-394
[17] Physics at Surfaces, Cambridge University Press, New-York, 1998
[18] Physical properties of thin films and artificial multilayers, Encyclopedia of Materials: Science and Technology 1.9, Pergamon Press, 2001, pp. 3683-3693 (Chapter Growth Modes)
[19] Physics of Crystal Growth, Cambridge University Press, 1999
[20] Equilibrium nano-shape changes induced by epitaxial stress (generalised Wulf–Kaishew theorem), Surf. Sci., Volume 457 (2000), pp. 229-253
[21] Key parameters for the formation of self-assembled quantum dot induced by the Stranski–Krastanov transition: a comparison for various semiconductor systems, C. R. Physique, Volume 6 (2005) no. 1 | DOI
[22] Self-organized epitaxial growth on spontaneous nano-patterned templates, C. R. Physique, Volume 6 (2005) no. 1 | DOI
[23] Small Angle Scattering of X-Rays, Wiley, New York, 1995
[24] X-Ray Diffuse Scattering from Self-Organized Mesoscopic Semiconductor Structures, Springer Tracts in Modern Physics, vol. 199, Springer, Berlin, 2004
[25] Strain determination in multilayers by complementary anomalous x-ray diffraction, Phys. Rev. B, Volume 69 (2004), p. 195307
[26] Structural investigation of semiconductor nanostructures by X-ray techniques, Nucl. Instr. Meth. Phys. Res. B, Volume 200 (2003), pp. 11-23
[27] X-ray characterization of self-organized semiconductor nanostructures, C. R. Physique, Volume 6 (2005) no. 1 | DOI
[28] Recent advances in semiconductor quantum-dot lasers, C. R. Physique, Volume 4 (2003), pp. 611-619
[29] Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique, C. R. Physique, Volume 4 (2003), pp. 701-713
[30] Single Quantum Dots: Fundamentals, Applications and New Concepts, Springer, Heidelberg, 2003
[31] Epitaxial self-organization: from surfaces to magnetic materials, C. R. Physique, Volume 6 (2005) no. 1 | DOI
[32] Magnetic anisotropy from single atoms to large monodomain islands on a metal surface, C. R. Physique, Volume 6 (2005) no. 1 | DOI
[33] Anisotropie magnétique superficielle et surstructures d'orientation, J. Phys. Rad., Volume 15 (1954), pp. 225-239
[34] Flat ferromagnetic expitaxial 48Ni/52Fe(111) films of few atomic layers, Phys. Stat. Sol., Volume 27 (1968), p. 313
[35] Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers, Phys. Rev. B, Volume 39 (1989), pp. 865-868
[36] Microscopic origin of magnetic anisotropy in Au/Co/Au probed with X-ray magnetic circular dichroism, Phys. Rev. Lett., Volume 75 (1995) no. 20, pp. 3753-3755
[37] Three-dimensional stacking of self-assembled quantum dots in multilayer structures, C. R. Physique, Volume 6 (2005) no. 1 | DOI
[38] Vertically self-organized InAs quantum box islands on GaAs(100), Phys. Rev. Lett., Volume 75 (1995), pp. 2542-2545
[39] Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant, Science, Volume 282 (1998), p. 734
[40] Self-organization in growth of quantum dot superlattices, Phys. Rev. Lett., Volume 76 (1996), p. 1675
[41] Ordering self-assembled islands without substrate patterning, Appl. Phys. Let., Volume 82 (2003) no. 11, p. 1772
[42] Nanometric artificial structuration of semiconductor surfaces for crystalline growth, C. R. Physique, Volume 6 (2005) no. 1 | DOI
[43] Alignment of self-assembled magnetic nanostructures: Co dot chains and stripes on grooved Ru(0001), Appl. Phys. Lett., Volume 79 (2001) no. 23, p. 3848
[44] Self-assembled epitaxial magnetic lateral structures on Ru: controlling the shape and placement, Phys. Rev. B, Volume 69 (2004), p. 184409
[45] Organizing nanoclusters on functionalized surfaces, Appl. Surf. Sci., Volume 191 (2002), p. 205
[46] J. Gierak, D. Mailly, P. Hawkes, R. Jede, L. Bruchhaus, L. Bardotti, B. Prevel, P. Melinon, A. Perez, R. Hyndman, J.P. Jamet, J. Ferré, A. Mougin, C. Chappert, V. Mathet, P. Warin, J. Chapman, Exploration of the ultimate patterning potential achievable with high resolution focused ion beams, Appl. Phys. A, in press
[47] Nanometals: formation and color, Mater. Today, Volume 7 (2004) no. 2, pp. 26-31
[48] Self-Assemblies of Nanocrystals: Fabrication and Collective Properties, Marcel Dekker, New York, 2002 (p. 207)
[49] Mesoscopic structures of nanocrystals: collective magnetic properties due to the alignment of nanocrystals, J. Phys. Chem. B, Volume 108 (2004) no. 6, pp. 1848-1854
[50] Monodisperse ferromagnetic particles for microwave applications, Adv. Mater., Volume 10 (1998), p. 1032
[51] Organometallic approach to nanoparticles synthesis and self-organization, C. R. Physique, Volume 6 (2005) no. 1 | DOI
Cited by Sources:
Comments - Policy