Comptes Rendus
Self-organization on surfaces: foreword
Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 3-9.

After decades of work, the growth of continuous thin films, i.e., two-dimensional structures, is progressively becoming a technological issue more than a field of fundamental research. Incidentally self-organization of nanostructures on surfaces is now an important field of research, i.e., structures of dimensionality one or zero, with a steep rise of attention in the past five years. Whereas self-organization was initially motivated by potential applications, it has up to now essentially contributed to the advancement of fundamental science in low dimensions, as model systems could be produced that could not have been fabricated by lithography. This Special Issue aims at giving a cross-community timely overview of the field. The Issue gathers a broad panel of articles covering various self-organization mechanisms, specific structural characterization, physical properties, and current trends in extending the versatility of growth. The materials mostly covered here are semiconductors and magnetic materials.

Auto-organisation sur les surfaces : préface. Après plusieurs décennies d'intense activité, la croissance des couches minces, c'est-à-dire de systèmes de dimension deux, tend progressivement à devenir plus une question de maîtrise technologique qu'un sujet de recherche fondamentale. Dans le même temps l'auto-organisation aux surfaces de nanostructures, c'est-à-dire de dimensionnalité un voire zéro, prend une importance grandissante, tout spécialement depuis cinq ans. Alors que l'auto-organisation était initialement motivée par des perspectives d'applications, elle a pour l'instant essentiellement contribué à l'acquisition de nouvelles connaissances de physique fondamentale en basse dimension, puisque des systèmes modèles ont pu être fabriqués, qui n'auraient pu être obtenus par la technique conventionnelle de structuration qu'est la lithographie. Ce dossier thématique a pour objectif de proposer un aperçu actuel de l'auto-organisation, en essayant de dépasser les frontières de communautés. Ainsi sont rassemblées des contributions traitant de divers mécanismes physiques de l'auto-organisation, de techniques de caractérisation spécifiques, de propriétés physiques, et des nouvelles approches poursuivies pour augmenter la versatilité des procédés de croissance. Les matériaux couverts ici sont essentiellement les semiconducteurs et les matériaux magnétiques.

Published online:
DOI: 10.1016/j.crhy.2004.11.009
Keywords: Self-organization, Self-assembly, Bottom-up, Low-dimensionality, Dots, Wires, Nanostructures
Keywords: Auto-organisation, Auto-assemblage, Bottom-up, Basse dimensionnalité, Plots, Fils, Nanostructures

Olivier Fruchart 1

1 Laboratoire Louis Néel, 25, avenue des Martyrs, BP 166, 38042 Grenoble cedex 9, France
@article{CRPHYS_2005__6_1_3_0,
     author = {Olivier Fruchart},
     title = {Self-organization on surfaces: foreword},
     journal = {Comptes Rendus. Physique},
     pages = {3--9},
     publisher = {Elsevier},
     volume = {6},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crhy.2004.11.009},
     language = {en},
}
TY  - JOUR
AU  - Olivier Fruchart
TI  - Self-organization on surfaces: foreword
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 3
EP  - 9
VL  - 6
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.11.009
LA  - en
ID  - CRPHYS_2005__6_1_3_0
ER  - 
%0 Journal Article
%A Olivier Fruchart
%T Self-organization on surfaces: foreword
%J Comptes Rendus. Physique
%D 2005
%P 3-9
%V 6
%N 1
%I Elsevier
%R 10.1016/j.crhy.2004.11.009
%G en
%F CRPHYS_2005__6_1_3_0
Olivier Fruchart. Self-organization on surfaces: foreword. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 3-9. doi : 10.1016/j.crhy.2004.11.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.009/

[1] Y. Arakawa; H. Sakaki Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Let., Volume 40 (1982), pp. 939-941

[2] M. Asada; Y. Miyamoto; Y. Suematsu Gain and the threshold of three dimensional quantum-box lasers, IEEE J. Quantum Elect., Volume 22 (1986), pp. 1915-1921

[3] H. Brune Microscopic view of epitaxial growth: nucleation and aggregation, Appl. Phys., Volume 31 (1998), pp. 121-229

[4] C.R. Henry Growth, structure and morphology of supported metal clusters studied by surface science techniques, Cryst. Res. Technol., Volume 33 (1998), pp. 1119-1140

[5] C. Teichert Self-organization of nanostructures in semiconductor heteroepitaxy, Phys. Rep., Volume 365 (2002), pp. 335-432

[6] S. Rousset; V. Repain; G. Baudot; H. Ellmer; Y. Garreau; V. Etgens; J.M. Berroir; B. Croset; M. Sotto; P. Zeppenfeld; J. Ferré; J.P. Jamet; C. Chappert; J. Lecoeur Self-ordering on crystal surfaces: fundamentals and applications, Mater. Sci. Engrg., Volume 96 (2002), pp. 169-177

[7] V.A. Shchukin; D. Bimberg Spontaneous ordering of nanostructures on crystal surfaces, Rev. Mod. Phys., Volume 71 (1999) no. 4, pp. 1125-1171

[8] R.M. Tromp; J.B. Hannon Thermodynamics of nucleation and growth, Surf. Rev. Lett., Volume 9 (2002) no. 3–4, pp. 1565-1593

[9] P. Gambardella; S.S. Dhesi; S. Gardonio; C. Grazioli; P. Ohresser; C. Carbone Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films, Phys. Rev. Lett., Volume 88 (2002) no. 4, p. 047202

[10] P. Gambardella; S. Rusponi; M. Veronese; S.S. Dhesi; C. Grazioli; A. Dallmeyer; I. Cabria; R. Zeller; P.H. Dederichs; K. Kern; C. Carbone; H. Brune Giant magnetic anisotropy of single cobalt atoms and nanoparticles, Science, Volume 300 (2003) no. 5622, pp. 1130-1133

[11] O. Pierre-Louis Steps on surfaces, C. R. Physique, Volume 6 (2005) no. 1 | DOI

[12] W.K. Burton; N. Cabrera; F.C. Frank Philos. Trans. Roy. Soc. London Ser. A, 243 (1951), p. 299

[13] M. Volmer; A. Weber Keimbildung in übersättigten Gebilden, Z. Physik. Chem., Volume 119 (1926), pp. 277-301

[14] I.N. Stranski; L. Krastanov Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinender, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl. IIb (1938), p. 146

[15] F.C. Frank; J.H. van der Merwe Proc. Roy. Soc. London Ser. A, 198 (1949), p. 216

[16] E. Bauer Phänomenologische Theorie der Kristallabscheidung an Oberflächen, Int. Zeit. Kristallogr., Volume 110 (1958), pp. 372-394

[17] A. Zangwill Physics at Surfaces, Cambridge University Press, New-York, 1998

[18] A. Brune Physical properties of thin films and artificial multilayers, Encyclopedia of Materials: Science and Technology 1.9, Pergamon Press, 2001, pp. 3683-3693 (Chapter Growth Modes)

[19] A. Pimpinelli; J. Villain Physics of Crystal Growth, Cambridge University Press, 1999

[20] P. Müller; R. Kern Equilibrium nano-shape changes induced by epitaxial stress (generalised Wulf–Kaishew theorem), Surf. Sci., Volume 457 (2000), pp. 229-253

[21] H. Mariette Key parameters for the formation of self-assembled quantum dot induced by the Stranski–Krastanov transition: a comparison for various semiconductor systems, C. R. Physique, Volume 6 (2005) no. 1 | DOI

[22] S. Rousset; B. Croset; Y. Girard; G. Prévot; V. Repain; S. Rohart Self-organized epitaxial growth on spontaneous nano-patterned templates, C. R. Physique, Volume 6 (2005) no. 1 | DOI

[23] A. Guinier; G. Fournet Small Angle Scattering of X-Rays, Wiley, New York, 1995

[24] M. Schmidbauer X-Ray Diffuse Scattering from Self-Organized Mesoscopic Semiconductor Structures, Springer Tracts in Modern Physics, vol. 199, Springer, Berlin, 2004

[25] T.U. Schülli; R.T. Lechner; J. Stangl; G. Springholz; G. Bauer; M. Sztucki; T.H. Metzger Strain determination in multilayers by complementary anomalous x-ray diffraction, Phys. Rev. B, Volume 69 (2004), p. 195307

[26] J. Stangl; A. Hesse; T. Roch; V. Holy; G. Bauer; T. Schülli; T.H. Metzger Structural investigation of semiconductor nanostructures by X-ray techniques, Nucl. Instr. Meth. Phys. Res. B, Volume 200 (2003), pp. 11-23

[27] T.H. Metzger; T.U. Schülli; M. Schmidbauer X-ray characterization of self-organized semiconductor nanostructures, C. R. Physique, Volume 6 (2005) no. 1 | DOI

[28] J.P. Reithmaier; A. Forchel Recent advances in semiconductor quantum-dot lasers, C. R. Physique, Volume 4 (2003), pp. 611-619

[29] V. Berger; J.-M. Gérard Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique, C. R. Physique, Volume 4 (2003), pp. 701-713

[30] P. Michler Single Quantum Dots: Fundamentals, Applications and New Concepts, Springer, Heidelberg, 2003

[31] O. Fruchart Epitaxial self-organization: from surfaces to magnetic materials, C. R. Physique, Volume 6 (2005) no. 1 | DOI

[32] P. Gambardella; S. Rusponi; T. Cren; H. Brune Magnetic anisotropy from single atoms to large monodomain islands on a metal surface, C. R. Physique, Volume 6 (2005) no. 1 | DOI

[33] L. Néel Anisotropie magnétique superficielle et surstructures d'orientation, J. Phys. Rad., Volume 15 (1954), pp. 225-239

[34] U. Gradmann; J. Müller Flat ferromagnetic expitaxial 48Ni/52Fe(111) films of few atomic layers, Phys. Stat. Sol., Volume 27 (1968), p. 313

[35] P. Bruno Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers, Phys. Rev. B, Volume 39 (1989), pp. 865-868

[36] D. Weller; J. Stöhr; R. Nakajima; A. Carl; M.G. Samant; C. Chappert; R. Mégy; P. Beauvillain; P. Veillet; G.A. Held Microscopic origin of magnetic anisotropy in Au/Co/Au probed with X-ray magnetic circular dichroism, Phys. Rev. Lett., Volume 75 (1995) no. 20, pp. 3753-3755

[37] G. Springholz Three-dimensional stacking of self-assembled quantum dots in multilayer structures, C. R. Physique, Volume 6 (2005) no. 1 | DOI

[38] Q. Xie; A. Madhukar; P. Chen; N. Kobayashi Vertically self-organized InAs quantum box islands on GaAs(100), Phys. Rev. Lett., Volume 75 (1995), pp. 2542-2545

[39] G. Springholz; V. Holy; M. Pinczolits; G. Bauer Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant, Science, Volume 282 (1998), p. 734

[40] J. Tersoff; C. Teichert; M.G. Lagally Self-organization in growth of quantum dot superlattices, Phys. Rev. Lett., Volume 76 (1996), p. 1675

[41] G. Capellinia; M. De Seta; C. Spinella; F. Evangelisti Ordering self-assembled islands without substrate patterning, Appl. Phys. Let., Volume 82 (2003) no. 11, p. 1772

[42] J. Eymery; G. Biasiol; E. Kapon; T. Ogino Nanometric artificial structuration of semiconductor surfaces for crystalline growth, C. R. Physique, Volume 6 (2005) no. 1 | DOI

[43] C. Yu; D. Li; J. Pearson; S.D. Bader Alignment of self-assembled magnetic nanostructures: Co dot chains and stripes on grooved Ru(0001), Appl. Phys. Lett., Volume 79 (2001) no. 23, p. 3848

[44] R. Cheng; J. Pearson; H.F. Ding; V. Metlushko; S.D. Bader; F.Y. Fradin; D. Li Self-assembled epitaxial magnetic lateral structures on Ru: controlling the shape and placement, Phys. Rev. B, Volume 69 (2004), p. 184409

[45] L. Bardottia; B. Prevel; P. Jensen; P. Melinon; A. Perez; J. Gierak; G. Faini; D. Mailly Organizing nanoclusters on functionalized surfaces, Appl. Surf. Sci., Volume 191 (2002), p. 205

[46] J. Gierak, D. Mailly, P. Hawkes, R. Jede, L. Bruchhaus, L. Bardotti, B. Prevel, P. Melinon, A. Perez, R. Hyndman, J.P. Jamet, J. Ferré, A. Mougin, C. Chappert, V. Mathet, P. Warin, J. Chapman, Exploration of the ultimate patterning potential achievable with high resolution focused ion beams, Appl. Phys. A, in press

[47] L.M. Liz-Marzán Nanometals: formation and color, Mater. Today, Volume 7 (2004) no. 2, pp. 26-31

[48] M.P. Pileni Self-Assemblies of Nanocrystals: Fabrication and Collective Properties, Marcel Dekker, New York, 2002 (p. 207)

[49] Y. Lalatonne; L. Motte; V. Russier; A.T. Ngo; P. Bonville; M.P. Pilén Mesoscopic structures of nanocrystals: collective magnetic properties due to the alignment of nanocrystals, J. Phys. Chem. B, Volume 108 (2004) no. 6, pp. 1848-1854

[50] P. Toneguzzo; G. Viau; O. Acher; F. Fiévet-Vincent; F. Fiévet Monodisperse ferromagnetic particles for microwave applications, Adv. Mater., Volume 10 (1998), p. 1032

[51] B. Chaudret Organometallic approach to nanoparticles synthesis and self-organization, C. R. Physique, Volume 6 (2005) no. 1 | DOI

Cited by Sources:

Comments - Policy