[Dynamique des marches atomiques]
Nous présentons quelques avancées récentes dans l'étude de la dynamique des marches cristallines. Nous mentionnerons tout d'abord différentes approches pour la modélisation de la dynamique des marches, basées sur la thermodynamique des processus irréversibles, les théories de rugosification, et le transport de masse. Dans une deuxième partie, nous analyserons le mouvement de marches couplées à la diffusion des atomes mobiles à la surface. Nous développerons particulièrement le cas des surfaces vicinales et des îlots bidimensionnels. Finalement, nous étudierons les conséquences de la relaxation élastique et électronique du solide sur la dynamique des marches et des adatomes.
In this article, we wish to point out some of the recent advances in the study of step dynamics on crystal surfaces. We will first list some approaches to steps dynamics, based on irreversible thermodynamics, kinetic roughening concepts, and mass transport mechanisms. In a second part, we shall analyze step motion coupled to the diffusion of mobile atoms on terraces. A special focus will be given on pattern formation on vicinal surfaces and two-dimensional islands. Finally, we will report on the consequences of elastic and electronic relaxation on the dynamics of steps and adatoms.
Mots-clés : Marche atomique, Croissance cristalline, Électromigration, Fluctuation de marche, Accumulation de marches, Dynamique non-linéaire, Auto-organisation
Olivier Pierre-Louis 1
@article{CRPHYS_2005__6_1_11_0, author = {Olivier Pierre-Louis}, title = {Dynamics of crystal steps}, journal = {Comptes Rendus. Physique}, pages = {11--21}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.005}, language = {en}, }
Olivier Pierre-Louis. Dynamics of crystal steps. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 11-21. doi : 10.1016/j.crhy.2004.11.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.005/
[1] Philos. Trans. Roy. Soc. London Ser. A, 243 (1951), p. 299
[2] Phys. Rev. B, 45 (1992), pp. 3718-3729
[3] Phys. Rev. E, 68 (2003), p. 021604
[4] Phys. Rev. Lett., 51 (1983), p. 1930
[5] Phys. Rev. Lett., 78 (1997), p. 3342
[6] Surf. Sci., 29 (1990), p. L659
[7] Surf. Sci., 93 (2004), p. 165901
[8] J. Phys. Cond. Matter, 51 (2002), p. 949
[9] Surf. Sci., 374 (1997), p. 291
[10] Phys. Rev. B, 62 (2000), p. 13697
[11] J. Phys. (Paris) I, 1 (1991), p. 19
[12] Phys. Rev. B, 41 (1990), p. 5500
[13] J. Appl. Phys., 40 (1969), p. 614
[14] Phys. Rev. Lett., 87 (2001), p. 048701
[15] Surf. Sci. Rep., 68 (2001), p. 1
[16] J. Appl. Phys., 28 (1957), p. 333
[17] Phys. Rev. B, 54 (1996), p. 11752
[18] Phys. Rev. Lett., 79 (1997), p. 3210
[19] Phys. Rev. B, 57 (1998), p. R9459
[20] Phys. Rev. B, 62 (2000), p. 16074
[21] Phys. Rev. Lett., 87 (2001), p. 106104
[22] Surf. Sci., 523 (2003), p. L53
[23] Phys. Rev. B, 66 (2002), p. 165407
[24] Phys. Rev. B, 53 (1996), p. 16041
[25] J. Crystal Growth, 264 (2004), p. 499
[26] Phys. Rev. Lett., 56 (1986)
[27] et al. Phys. Rev. B, 59 (1999), p. 6879
[28] Phys. Rev. B, 62 (2000), p. 1889
[29] Europhys. Lett., 52 (2000), p. 692
[30] Physics of Crystal Growth, Cambridge University Press, 1999
[31] Sov. Phys. Sol. State, 34 (1992), p. 809
[32] Phys. Rev. Lett., 82 (1999), p. 3661
[33] Phys. Rev. B, 65 (2002), p. 041404
[34] Phys. Rev. B, 54 (1996), p. 5114
[35] Phys. Rev. Lett., 83 (1999), p. 4353
[36] Surf. Sci., 446 (2000), p. 89
[37] Phys. Rev. A, 39 (1989), p. 5887
[38] Phys. Rev. E, 57 (1998), p. 4323
[39] Nonlinearity, 17 (2004), p. 477
[40] Phys. Rev. Lett., 81 (1998), p. 4444
[41] Phys. Rev. E, 49 (1997), p. 2601
[42] et al. Phys. Rev. B, 65 (2002), p. 195403
[43] Phys. Rev. Lett., 88 (2002), p. 046102
[44] Phys. Rev. Lett., 74 (1995), p. 134
[45] et al. Surf. Sci., 527 (2003), p. L222
[46] Phys. Rev. B, 65 (2002), p. 245427
[47] Phys. Rev. B, 63 (2001), p. 045309
[48] Phys. Rev. Lett., 81 (1998), p. 2743
[49] Phys. Rev. Lett., 47 (1993), p. 7408
[50] Phys. Rev. Lett., 80 (1998), p. 4221
[51] Phys. Rev. Lett., 86 (2001), p. 5538
[52] Phys. Rev. Lett., 68 (2003), p. 020601
[53] Physica D, 128 (1999), p. 87
[54] Phys. Rev. Lett., 92 (2004), p. 090601
[55] Perfection of Crystals, Wiley, NY, 1958, p. 411
[56] et al. Surf. Sci., 213 (1989), p. 157
[57] Phys. Rev. B, 57 (1998), p. 14891
[58] Phys. Rep., 324 (2000), p. 271
[59] Linear and Nonlinear Waves, Wiley, 1976
[60] J. Phys. Chem. B, 108 (2004), p. 6062
[61] Phys. Rev. E, 32 (1995), p. 639
[62] J. Crystal Growth, 198 (1999), p. 38
[63] Phys. Rev. B, 63 (2001), p. 241401
[64] J. Chang, O. Pierre-Louis, C. Misbah, unpublished
[65] et al. Phys. Rev. Lett., 88 (2002), p. 206103
[66] Phys. Rev. B, 48 (1987), p. 1605
[67] Surf. Sci., 442 (1999), p. 318
[68] A. Pascale, PhD Thesis, Luminy, Marseille, 2003
[69] Phys. Rev. E, 53 (1996), p. 4964
[70] Surf. Sci., 492 (2001), p. 125
[71] Surf. Sci., 65 (2002), p. 075409
[72] Surf. Sci., 65 (1977), p. 607
[73] et al. Phys. Rev. Lett., 82 (1999), p. 787
[74] Sov. Phys. JETP, 52 (1980), p. 129
[75] J. Phys. I (Paris), 5 (1995), p. 695
[76] et al. Phys. Rev. Lett., 64 (1990), p. 2406
[77] Phys. Rev. Lett., 80 (1998), p. 1268
[78] Phys. Rev. B, 519 (2002), p. 15
[79] Surf. Sci., 375 (1997), p. 129
[80] Phys. Rev. Lett., 89 (2002), p. 196104
[81] C. R. Acad. Sci. Paris, 87 (2001), p. 156101
[82] Proceedings of the ICCG14, J. Crystal Growth (2004)
[83] Europhys. Lett., 63 (2003), p. 14
[84] Phys. Rev. B, 54 (1996), p. R11066
[85] Handbook of Surface Science, vol. 1, Elsevier Science, 1996
[86] et al. Phys. Rev. Lett., 67 (1991), p. 3543
[87] et al. Surf. Sci., 307 (1994), p. 747
[88] et al. Phys. Rev. Lett., 80 (1997), p. 5381
[89] et al. Science, 273 (1996), p. 226
[90] Y. Saito, C. Misbah, O. Pierre-Louis, preprint
[91] Physica A, 313 (1991), p. 47
[92] Phys. Rev. Lett., 91 (2003), p. 086103
[93] Phys. Rev. Lett., 71 (1993), p. 3810
[94] Phys. Rev. B, 67 (2003), p. 075408
- Hybrid Analytical–Monte Carlo Model of In/GaAs(001) Droplet Epitaxy: Theory and Experiment, physica status solidi (b), Volume 255 (2018) no. 4 | DOI:10.1002/pssb.201700360
- Non-conserved dynamics of steps on vicinal surfaces during electromigration-induced step bunching, The European Physical Journal B, Volume 85 (2012) no. 2 | DOI:10.1140/epjb/e2012-30016-4
- Step-Bunching Instabilities of Vicinal Surfaces During Growth and Sublimation of Crystals – the Role of Electromigration of Adatoms, Nanophenomena at Surfaces, Volume 47 (2011), p. 259 | DOI:10.1007/978-3-642-16510-8_12
- From crystal steps to continuum laws: Behavior near large facets in one dimension, Physica D: Nonlinear Phenomena, Volume 240 (2011) no. 13, p. 1100 | DOI:10.1016/j.physd.2011.03.007
- Electromigration in Macroscopic Relaxation of Stepped Surfaces, Multiscale Modeling Simulation, Volume 8 (2010) no. 2, p. 667 | DOI:10.1137/090760635
- Nonlinear Dynamics of Surface Steps, Nonlinear Dynamics of Nanosystems (2010), p. 143 | DOI:10.1002/9783527629374.ch5
- Anticoarsening and complex dynamics of step bunches on vicinal surfaces during sublimation, Physical Review E, Volume 82 (2010) no. 1 | DOI:10.1103/physreve.82.011606
- Anisotropic dynamics of a vicinal surface under the meandering step instability, Physical Review B, Volume 80 (2009) no. 17 | DOI:10.1103/physrevb.80.174115
- Step line tension and step morphological evolution on the Si(111)(1×1)surface, Physical Review B, Volume 77 (2008) no. 11 | DOI:10.1103/physrevb.77.115424
- Macroscopic view of crystal-step transparency, Physical Review E, Volume 78 (2008) no. 4 | DOI:10.1103/physreve.78.042602
- A Step‐Flow Model for the Heteroepitaxial Growth of Strained, Substitutional, Binary Alloy Films with Phase Segregation: I. Theory, Multiscale Modeling Simulation, Volume 6 (2007) no. 1, p. 158 | DOI:10.1137/06065355x
- Morphological stability of electromigration-driven vacancy islands, Physical Review E, Volume 75 (2007) no. 4 | DOI:10.1103/physreve.75.046210
- Multiscale Modeling of Epitaxial Growth: From Discrete-Continuum to Continuum Equations, Analysis, Modeling and Simulation of Multiscale Problems (2006), p. 65 | DOI:10.1007/3-540-35657-6_3
- An integral equation method for epitaxial step-flow growth simulations, Journal of Computational Physics, Volume 216 (2006) no. 2, p. 724 | DOI:10.1016/j.jcp.2006.01.006
- A 2 + 1-Dimensional Terrace-Step-Kink Model for Epitaxial Growth Far from Equilibrium, Multiscale Modeling Simulation, Volume 5 (2006) no. 1, p. 45 | DOI:10.1137/050631434
- Dynamic phase transitions in electromigration-induced step bunching, Physical Review B, Volume 73 (2006) no. 23 | DOI:10.1103/physrevb.73.235430
- Kinetic Monte Carlo simulations of oscillatory shape evolution for electromigration-driven islands, Physical Review B, Volume 74 (2006) no. 24 | DOI:10.1103/physrevb.74.245423
- Self-organization on surfaces: foreword, Comptes Rendus. Physique, Volume 6 (2005) no. 1, p. 3 | DOI:10.1016/j.crhy.2004.11.009
- Multiscale kinetic Monte Carlo algorithm for simulating epitaxial growth, Physical Review B, Volume 72 (2005) no. 20 | DOI:10.1103/physrevb.72.205421
Cité par 19 documents. Sources : Crossref
Commentaires - Politique