In this article, we wish to point out some of the recent advances in the study of step dynamics on crystal surfaces. We will first list some approaches to steps dynamics, based on irreversible thermodynamics, kinetic roughening concepts, and mass transport mechanisms. In a second part, we shall analyze step motion coupled to the diffusion of mobile atoms on terraces. A special focus will be given on pattern formation on vicinal surfaces and two-dimensional islands. Finally, we will report on the consequences of elastic and electronic relaxation on the dynamics of steps and adatoms.
Nous présentons quelques avancées récentes dans l'étude de la dynamique des marches cristallines. Nous mentionnerons tout d'abord différentes approches pour la modélisation de la dynamique des marches, basées sur la thermodynamique des processus irréversibles, les théories de rugosification, et le transport de masse. Dans une deuxième partie, nous analyserons le mouvement de marches couplées à la diffusion des atomes mobiles à la surface. Nous développerons particulièrement le cas des surfaces vicinales et des îlots bidimensionnels. Finalement, nous étudierons les conséquences de la relaxation élastique et électronique du solide sur la dynamique des marches et des adatomes.
Mots-clés : Marche atomique, Croissance cristalline, Électromigration, Fluctuation de marche, Accumulation de marches, Dynamique non-linéaire, Auto-organisation
Olivier Pierre-Louis 1
@article{CRPHYS_2005__6_1_11_0, author = {Olivier Pierre-Louis}, title = {Dynamics of crystal steps}, journal = {Comptes Rendus. Physique}, pages = {11--21}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.005}, language = {en}, }
Olivier Pierre-Louis. Dynamics of crystal steps. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 11-21. doi : 10.1016/j.crhy.2004.11.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.005/
[1] Philos. Trans. Roy. Soc. London Ser. A, 243 (1951), p. 299
[2] Phys. Rev. B, 45 (1992), pp. 3718-3729
[3] Phys. Rev. E, 68 (2003), p. 021604
[4] Phys. Rev. Lett., 51 (1983), p. 1930
[5] Phys. Rev. Lett., 78 (1997), p. 3342
[6] Surf. Sci., 29 (1990), p. L659
[7] Surf. Sci., 93 (2004), p. 165901
[8] J. Phys. Cond. Matter, 51 (2002), p. 949
[9] Surf. Sci., 374 (1997), p. 291
[10] Phys. Rev. B, 62 (2000), p. 13697
[11] J. Phys. (Paris) I, 1 (1991), p. 19
[12] Phys. Rev. B, 41 (1990), p. 5500
[13] J. Appl. Phys., 40 (1969), p. 614
[14] Phys. Rev. Lett., 87 (2001), p. 048701
[15] Surf. Sci. Rep., 68 (2001), p. 1
[16] J. Appl. Phys., 28 (1957), p. 333
[17] Phys. Rev. B, 54 (1996), p. 11752
[18] Phys. Rev. Lett., 79 (1997), p. 3210
[19] Phys. Rev. B, 57 (1998), p. R9459
[20] Phys. Rev. B, 62 (2000), p. 16074
[21] Phys. Rev. Lett., 87 (2001), p. 106104
[22] Surf. Sci., 523 (2003), p. L53
[23] Phys. Rev. B, 66 (2002), p. 165407
[24] Phys. Rev. B, 53 (1996), p. 16041
[25] J. Crystal Growth, 264 (2004), p. 499
[26] Phys. Rev. Lett., 56 (1986)
[27] et al. Phys. Rev. B, 59 (1999), p. 6879
[28] Phys. Rev. B, 62 (2000), p. 1889
[29] Europhys. Lett., 52 (2000), p. 692
[30] Physics of Crystal Growth, Cambridge University Press, 1999
[31] Sov. Phys. Sol. State, 34 (1992), p. 809
[32] Phys. Rev. Lett., 82 (1999), p. 3661
[33] Phys. Rev. B, 65 (2002), p. 041404
[34] Phys. Rev. B, 54 (1996), p. 5114
[35] Phys. Rev. Lett., 83 (1999), p. 4353
[36] Surf. Sci., 446 (2000), p. 89
[37] Phys. Rev. A, 39 (1989), p. 5887
[38] Phys. Rev. E, 57 (1998), p. 4323
[39] Nonlinearity, 17 (2004), p. 477
[40] Phys. Rev. Lett., 81 (1998), p. 4444
[41] Phys. Rev. E, 49 (1997), p. 2601
[42] et al. Phys. Rev. B, 65 (2002), p. 195403
[43] Phys. Rev. Lett., 88 (2002), p. 046102
[44] Phys. Rev. Lett., 74 (1995), p. 134
[45] et al. Surf. Sci., 527 (2003), p. L222
[46] Phys. Rev. B, 65 (2002), p. 245427
[47] Phys. Rev. B, 63 (2001), p. 045309
[48] Phys. Rev. Lett., 81 (1998), p. 2743
[49] Phys. Rev. Lett., 47 (1993), p. 7408
[50] Phys. Rev. Lett., 80 (1998), p. 4221
[51] Phys. Rev. Lett., 86 (2001), p. 5538
[52] Phys. Rev. Lett., 68 (2003), p. 020601
[53] Physica D, 128 (1999), p. 87
[54] Phys. Rev. Lett., 92 (2004), p. 090601
[55] Perfection of Crystals, Wiley, NY, 1958, p. 411
[56] et al. Surf. Sci., 213 (1989), p. 157
[57] Phys. Rev. B, 57 (1998), p. 14891
[58] Phys. Rep., 324 (2000), p. 271
[59] Linear and Nonlinear Waves, Wiley, 1976
[60] J. Phys. Chem. B, 108 (2004), p. 6062
[61] Phys. Rev. E, 32 (1995), p. 639
[62] J. Crystal Growth, 198 (1999), p. 38
[63] Phys. Rev. B, 63 (2001), p. 241401
[64] J. Chang, O. Pierre-Louis, C. Misbah, unpublished
[65] et al. Phys. Rev. Lett., 88 (2002), p. 206103
[66] Phys. Rev. B, 48 (1987), p. 1605
[67] Surf. Sci., 442 (1999), p. 318
[68] A. Pascale, PhD Thesis, Luminy, Marseille, 2003
[69] Phys. Rev. E, 53 (1996), p. 4964
[70] Surf. Sci., 492 (2001), p. 125
[71] Surf. Sci., 65 (2002), p. 075409
[72] Surf. Sci., 65 (1977), p. 607
[73] et al. Phys. Rev. Lett., 82 (1999), p. 787
[74] Sov. Phys. JETP, 52 (1980), p. 129
[75] J. Phys. I (Paris), 5 (1995), p. 695
[76] et al. Phys. Rev. Lett., 64 (1990), p. 2406
[77] Phys. Rev. Lett., 80 (1998), p. 1268
[78] Phys. Rev. B, 519 (2002), p. 15
[79] Surf. Sci., 375 (1997), p. 129
[80] Phys. Rev. Lett., 89 (2002), p. 196104
[81] C. R. Acad. Sci. Paris, 87 (2001), p. 156101
[82] Proceedings of the ICCG14, J. Crystal Growth (2004)
[83] Europhys. Lett., 63 (2003), p. 14
[84] Phys. Rev. B, 54 (1996), p. R11066
[85] Handbook of Surface Science, vol. 1, Elsevier Science, 1996
[86] et al. Phys. Rev. Lett., 67 (1991), p. 3543
[87] et al. Surf. Sci., 307 (1994), p. 747
[88] et al. Phys. Rev. Lett., 80 (1997), p. 5381
[89] et al. Science, 273 (1996), p. 226
[90] Y. Saito, C. Misbah, O. Pierre-Louis, preprint
[91] Physica A, 313 (1991), p. 47
[92] Phys. Rev. Lett., 91 (2003), p. 086103
[93] Phys. Rev. Lett., 71 (1993), p. 3810
[94] Phys. Rev. B, 67 (2003), p. 075408
Cited by Sources:
Comments - Policy