In this article, the multiloop amplitude prescription using the super-Poincaré invariant pure spinor formalism for the superstring is reviewed. Unlike the RNS prescription, there is no sum over spin structures and surface terms coming from the boundary of moduli space can be ignored. Massless N-point multiloop amplitudes vanish for , which implies (with two mild assumptions) the perturbative finiteness of superstring theory. Also, terms receive no multiloop contributions in agreement with the Type IIB S-duality conjecture of Green and Gutperle.
Dans cet article, une prescription pour calculer des amplitudes de supercordes à plusieur boucles avec le formalisme invariant de (super-)Poincaré des spineurs purs est passé en revue. Contrairement à la prescription de RNS, il n'y a pas de somme sur les structures de spins et aucun termes du bord de l'espace des modules ne doit être ignoré. Les amplitudes à plusieur boucles avec N états externes de masse nulle sont nulles pour , ce qui implique (modulo deux hypothèses mineures) que la théorie des cordes perturbative est finie. En plus, les termes en ne recoivent pas de contributions à plusieur boucles en accord avec la conjecture de dualité S de Green et Gutperle pour la théorie de type IIB.
Mots-clés : Théorie des cordes, Amplitude à plusieur boucles, Supercordes
Nathan Berkovits 1
@article{CRPHYS_2005__6_2_185_0, author = {Nathan Berkovits}, title = {Covariant multiloop superstring amplitudes}, journal = {Comptes Rendus. Physique}, pages = {185--197}, publisher = {Elsevier}, volume = {6}, number = {2}, year = {2005}, doi = {10.1016/j.crhy.2004.12.009}, language = {en}, }
Nathan Berkovits. Covariant multiloop superstring amplitudes. Comptes Rendus. Physique, Strings, gravity, and the quest for unification - Strings 04, part II, Volume 6 (2005) no. 2, pp. 185-197. doi : 10.1016/j.crhy.2004.12.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.12.009/
[1] On covariant multiloop superstring amplitudes, Nucl. Phys. B, Volume 332 (1990), p. 39
[2] Multiloop calculations in covariant superstring theory, Phys. Lett. B, Volume 192 (1987), p. 95
[3] H. Verlinde, The path integral formulation of supersymmetric string theory, PhD Thesis, Univ. of Utrecht, 1988
[4] Catoptric tadpoles, Nucl. Phys. B, Volume 307 (1988), p. 221
[5] Two loop superstrings, 1. Main formulas, Phys. Lett. B, Volume 529 (2002), p. 241 | arXiv
[6] Conformal invariance, supersymmetry and string theory, Nucl. Phys. B, Volume 271 (1986), p. 93
[7] Explicit modular invariant two-loop superstring amplitude relevant for , JHEP, Volume 212 (1988), p. 313 | arXiv
[8] Superstring field theory, Nucl. Phys. B, Volume 218 (1983), p. 43
[9] Interacting string picture of the Neveu–Schwarz–Ramond model, Nucl. Phys. B, Volume 69 (1974), p. 77
[10] Interacting string picture of the fermionic string, Prog. Theor. Phys. Suppl., Volume 86 (1986), p. 163
[11] Contact interactions in superstring theory, Nucl. Phys. B, Volume 304 (1988), p. 108
[12] Super-Poincaré covariant quantization of the superstring, JHEP, Volume 04 (2000), p. 018 | arXiv
[13] ICTP lectures on covariant quantization of the superstring | arXiv
[14] Consistency of super-Poincaré covariant superstring tree amplitudes, JHEP, Volume 07 (2000), p. 015 | arXiv
[15] Relating the RNS and pure spinor formalisms for the superstring, JHEP, Volume 08 (2001), p. 026 | arXiv
[16] Lorentz invariance of the pure spinor BRST cohomology for the superstring, Phys. Lett. B, Volume 09 (2000), p. 046 | arXiv
[17] Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring, Nucl. Phys. B, Volume 635 (2002), p. 75 | arXiv
[18] Conformal invariance of the pure spinor superstring in a curved background, JHEP, Volume 0404 (2004), p. 041 | arXiv
[19] An introduction to the covariant quantization of superstrings, Classical Quant. Grav., Volume 0210 (2002), p. 054 | arXiv
[20] Operator mapping between RNS and extended pure spinor formalisms for superstring, JHEP, Volume 0302 (2003), p. 017 | arXiv
[21] On the cohomology and inner products of the Berkovits superparticle and superstring, JHEP, Volume 0402, 2004, p. 011 | arXiv
[22] Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring (JHEP, submitted for publication) | arXiv
[23] D-instantons, strings and M-theory, Phys. Lett. B, Volume 498 (1997), p. 195 | arXiv
[24] Nonrenormalization theorems and fermionic string finiteness, Phys. Lett. B, Volume 171 (1986), p. 189
[25] The n loop string amplitude: explicit formulas, finiteness and absence of ambiguities, Phys. Lett. B, Volume 277 (1992), p. 82
[26] On vanishing of multiloop contributions to point functions in Green–Schwarz formalism for heterotic string, Phys. Lett. B, Volume 187 (1987), p. 267
[27] Covariant description of superstrings, Phys. Lett. B, Volume 131 (1984), p. 367
[28] Classical superstring mechanics, Nucl. Phys. B, Volume 263 (1986), p. 93
[29] Pure spinor lines in superspace and ten-dimensional supersymmetric theories, Phys. Lett. B, Volume 258 (1991), p. 141
[30] Massive superstring vertex operator in superspace, JHEP, Volume 0208 (2002), p. 040 | arXiv
[31] On the B antighost in the pure spinor quantization of superstrings, Nucl. Phys. B, Volume 639, 2002, p. 182 | arXiv
[32] Two loops in eleven dimensions, Phys. Rev. D, Volume 61 (2000), p. 104010 | arXiv
[33] Type IIB conjectures, Nucl. Phys. B, Volume 533 (1998), p. 181 | arXiv
[34] Nonabelian Born–Infeld action and type I—heterotic duality 2: Nonrenormalization theorems, Nucl. Phys. B, Volume 648 (2003), p. 3 | arXiv
[35] Covariant one-loop amplitudes in | arXiv
[36] Towards covariant quantization of the supermembrane, JHEP, Volume 0209 (2002), p. 051 | arXiv
Cited by Sources:
Comments - Policy