Comptes Rendus
Physics of vortex merging
[Aspects physiques de la fusion de tourbillons]
Comptes Rendus. Physique, Volume 6 (2005) no. 4-5, pp. 431-450.

Cet article traite de l'interaction entre tourbillons co-rotatifs, dans des configurations semblables à celles présentes dans le sillage proche et moyen des avions de transport. Le processus fondamental de fusion des tourbillons est analysé et modélisé en détail dans une description bidimensionnelle, donnant accès à des conditions pour la fusion et son origine physique, ainsi qu'aux propriétés de l'écoulement résultant. Les effets tridimensionnels, sous forme d'une instabilité elliptique à courte longueur d'onde des vortex co-rotatifs initiaux, sont décrits et analysés théoriquement. Ils sont à l'origine de modifications importantes de la fusion, comme un démarrage plus rapide du processus et un vortex final plus gros. Des illustrations d'études expérimentales, numériques et théoriques récentes sont données, et la pertinence des résultats pour des applications aux sillages réalistes des avions est discutée.

This article deals with the interaction of co-rotating vortices, in configurations similar to those found in the extended near-wake of typical transport aircraft. The fundamental process of vortex merging is analyzed and modeled in detail in a two-dimensional context, giving insight into the conditions for merging and its physical origin, and yielding predictions for the resulting flow. Three-dimensional effects, in the form an elliptic short-wave instability arising in the initial co-rotating vortex flow, are described and analyzed theoretically. They are found to cause significant changes in the merging process, such as earlier merging and larger final vortex cores. Illustrations from recent experimental, numerical and theoretical studies are given, and the relevance of the results for applications to real aircraft wakes is discussed.

Publié le :
DOI : 10.1016/j.crhy.2005.06.003
Keywords: Vortex merging, Elliptic instability, Aircraft wakes
Mot clés : Fusion de tourbillons, Instabilité elliptique, Sillages d'avions
Patrice Meunier 1 ; Stéphane Le Dizès 1 ; Thomas Leweke 1

1 Institut de recherche sur les phénomènes hors équilibre, CNRS/universités Aix-Marseille I & II, 49, rue Frédéric Joliot Curie, BP 146, 13384 Marseille cedex 13, France
@article{CRPHYS_2005__6_4-5_431_0,
     author = {Patrice Meunier and St\'ephane Le Diz\`es and Thomas Leweke},
     title = {Physics of vortex merging},
     journal = {Comptes Rendus. Physique},
     pages = {431--450},
     publisher = {Elsevier},
     volume = {6},
     number = {4-5},
     year = {2005},
     doi = {10.1016/j.crhy.2005.06.003},
     language = {en},
}
TY  - JOUR
AU  - Patrice Meunier
AU  - Stéphane Le Dizès
AU  - Thomas Leweke
TI  - Physics of vortex merging
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 431
EP  - 450
VL  - 6
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.06.003
LA  - en
ID  - CRPHYS_2005__6_4-5_431_0
ER  - 
%0 Journal Article
%A Patrice Meunier
%A Stéphane Le Dizès
%A Thomas Leweke
%T Physics of vortex merging
%J Comptes Rendus. Physique
%D 2005
%P 431-450
%V 6
%N 4-5
%I Elsevier
%R 10.1016/j.crhy.2005.06.003
%G en
%F CRPHYS_2005__6_4-5_431_0
Patrice Meunier; Stéphane Le Dizès; Thomas Leweke. Physics of vortex merging. Comptes Rendus. Physique, Volume 6 (2005) no. 4-5, pp. 431-450. doi : 10.1016/j.crhy.2005.06.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.06.003/

[1] J.N. Reinaud; D.G. Dritschel The critical merger distance between two co-rotating quasi-geostrophic vortices, J. Fluid Mech., Volume 522 (2005), pp. 357-381

[2] L. Jacquin; D. Fabre; D. Sipp; E. Coustols Unsteadiness, instability and turbulence in trailing vortices, C. R. Physique, Volume 6 (2005) no. 4–5 (in this issue)

[3] D.W. Waugh The efficiency of symmetric vortex merger, Phys. Fluids A, Volume 4 (1992) no. 8, pp. 1745-1758

[4] P. Meunier; U. Ehrenstein; T. Leweke; M. Rossi A merging criterion for two-dimensional co-rotating vortices, Phys. Fluids, Volume 14 (2002) no. 8, pp. 2757-2766

[5] S. Le Dizès; A. Verga Viscous interactions of two co-rotating vortices before merging, J. Fluid Mech., Volume 467 (2002), pp. 389-410

[6] S. Le Dizès Non-axisymmetric vortices in two-dimensional flows, J. Fluid Mech., Volume 406 (2000), pp. 175-198

[7] K.V. Roberts; J.P. Christiansen Topics in computational fluid mechanics, Comput. Phys. Comm. (suppl.), Volume 3 (1972), pp. 14-32

[8] E.A. Overman; N.J. Zabusky Evolution and merger of isolated vortex structures, Phys. Fluids, Volume 25 (1982) no. 8, pp. 1297-1305

[9] R.W. Griffiths; E.J. Hopfinger Coalescing of geostrophic vortices, J. Fluid Mech., Volume 178 (1987), pp. 73-97

[10] S.A. Brandt; J.D. Iversen Merging of aircraft trailing vortices, J. Aircraft, Volume 14 (1977) no. 12, pp. 1212-1230

[11] V.J. Rossow Convective merging of vortex cores in lift-generated wakes, J. Aircraft, Volume 14 (1977) no. 3, pp. 283-290

[12] C.D. Winant; F.K. Browand Vortex pairing: The mechanism of turbulent mixing layer growth at moderate Reynolds number, J. Fluid Mech., Volume 63 (1974) no. 2, pp. 237-255

[13] K. Bajer; A. Bassom; A. Gilbert Accelerated diffusion in the centre of a vortex, J. Fluid Mech., Volume 437 (2001), pp. 395-411

[14] D.G. Dritschel The stability and energetics of corotating uniform vortices, J. Fluid Mech., Volume 157 (1985), pp. 95-134

[15] D.D. Dritschel The nonlinear evolution of rotating configurations of uniform vortices, J. Fluid Mech., Volume 172 (1986), pp. 157-182

[16] M.V. Melander; N.J. Zabusky; M.J. McWilliams Symmetric vortex merger in two dimensions: Causes and conditions, J. Fluid Mech., Volume 195 (1988), pp. 303-340

[17] P. Saffman; R. Szeto Equilibrium of a pair of equal uniform vortices, Phys. Fluids, Volume 23 (1980) no. 12, pp. 2339-2342

[18] C. Cerretelli; C. Williamson The physical mechanism for vortex merging, J. Fluid Mech., Volume 475 (2003), pp. 41-77

[19] P. Meunier, Etude expérimentale de deux tourbillons co-rotatifs, Ph.D. thesis, Université d'Aix-Marseille I, France, 2001

[20] P.B. Rhines; W.R. Young How rapidly is a passive scalar mixed within closed streamlines, J. Fluid Mech., Volume 133 (1983), pp. 133-145

[21] A.J. Bernoff; J.F. Lingevitch Rapid relaxation of an axisymmetric vortex, Phys. Fluids, Volume 6 (1994) no. 11, pp. 3717-3723

[22] P. Meunier; T. Leweke Elliptic instability of a co-rotating vortex pair, J. Fluid Mech., Volume 533 (2005), pp. 125-159

[23] G.F. Carnevale; J.C. McWilliams; Y. Pomeau; J.B. Weiss; W.R. Young Rates, pathways, and end states of nonlinear evolution in decaying two-dimensional turbulence: Scaling theory versus selective decay, Phys. Fluids A, Volume 4 (1992), pp. 1314-1316

[24] D. Fabre; L. Jacquin Short-wave cooperative instabilities in representative aircraft vortices, Phys. Fluids, Volume 16 (2004) no. 5, pp. 1366-1378

[25] S.C. Crow Stability theory for a pair of trailing vortices, AIAA J., Volume 8 (1970) no. 12, pp. 2172-2179

[26] T. Leweke; C.H.K. Williamson Cooperative elliptic instability of a vortex pair, J. Fluid Mech., Volume 360 (1998), pp. 85-119

[27] J. Jiménez Stability of a pair of co-rotating vortices, Phys. Fluids, Volume 18 (1975) no. 11, pp. 1580-1581

[28] P. Meunier; T. Leweke Three-dimensional instability during vortex merging, Phys. Fluids, Volume 13 (2001) no. 10, pp. 2747-2750

[29] S. Le Dizès; F. Laporte Theoretical predictions for the elliptic instability in a two-vortex flow, J. Fluid Mech., Volume 471 (2002), pp. 169-201

[30] R.R. Kerswell Elliptical instability, Annu. Rev. Fluid Mech., Volume 34 (2002), pp. 83-113

[31] S.E. Widnall; D. Bliss; C.-Y. Tsai The instability of short waves on a vortex ring, J. Fluid Mech., Volume 66 (1974) no. 1, pp. 35-47

[32] C. Eloy; P. Le Gal; S. Le Dizès Elliptic and triangular instabilities in rotating cylinders, J. Fluid Mech., Volume 476 (2003), p. 357

[33] B.J. Bayly; S.A. Orszag; T. Herbert Instability mechanisms in shear-flow transition, Annu. Rev. Fluid Mech., Volume 20 (1988), pp. 359-391

[34] T. Leweke; C.H.K. Williamson Three-dimensional instabilities in wake transition, Eur. J. Mech. B/Fluids, Volume 17 (1998), pp. 571-586

[35] R.T. Pierrehumbert Universal short-wave instability of two-dimensional eddies in an inviscid fluid, Phys. Rev. Lett., Volume 57 (1986), pp. 2157-2160

[36] B.J. Bayly Three-dimensional instability of elliptical flow, Phys. Rev. Lett., Volume 57 (1986), pp. 2160-2163

[37] T. Leweke; P. Meunier; F. Laporte; D. Darracq Controlled interaction of co-rotating vortices (K. Bütefisch et al., eds.), 3rd ONERA-DLR Aerospace Symposium (ODAS 2001), ONERA, Paris, 2001 (paper S2-3)

[38] A. Lifschitz; E. Hameiri Local stability conditions in fluid dynamics, Phys. Fluids A, Volume 3 (1991) no. 11, pp. 2644-2651

[39] S. Le Dizès Three-dimensional instability of a multipolar vortex in a rotating flow, Phys. Fluids, Volume 12 (2000) no. 11, pp. 2762-2774

[40] D.W. Moore; P.G. Saffman The instability of a straight vortex filament in a strain field, Proc. R. Soc. London A, Volume 346 (1975), pp. 413-425

[41] C.-Y. Tsai; S.E. Widnall The stability of short waves on a straight vortex filament in a weak externally imposed strain field, J. Fluid Mech., Volume 73 (1976) no. 4, pp. 721-733

[42] P.G. Saffman Vortex Dynamics, Cambridge Univ. Press, Cambridge, UK, 1992

[43] D. Fabre, D. Sipp, L. Jacquin, The Kelvin waves of the Lamb–Oseen vortex, J. Fluid Mech., submitted for publication

[44] F. Waleffe, The 3d instability of a strained vortex and its relation to turbulence, Ph.D. thesis, Massachusetts Institute of Technology (1989)

[45] D. Sipp Weakly nonlinear saturation of short-wave instabilities in a strained Lamb–Oseen vortex, Phys. Fluids, Volume 12 (2000) no. 7, pp. 1715-1729

[46] D.G. Dritschel; D.W. Waugh Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics, Phys. Fluids A, Volume 4 (1992) no. 8, pp. 1737-1744

[47] R.R. Trieling, O.U. Velasco Fuentes, G.J.F. van Heijst, Interaction of two unequal nonuniform vortices, Phys. Fluids, submitted for publication

[48] R.L. Ash; M.R. Khorrami Vortex stability (S.I. Green, ed.), Fluid Vortices, Kluwer Academic Publishers, Dordrecht/Norwell, MA, 1995, pp. 317-372 (Chapter VIII)

[49] L. Lacaze; A.-L. Birbaud; S. Le Dizès Elliptic instability in a Rankine vortex with axial flow, Phys. Fluids, Volume 17 (2005), p. 017101

[50] L. Lacaze, L'instabilité elliptique: exemples en aéronautique et en géophysique, Ph.D. thesis, Université de Provence (2004)

[51] S. Le Dizès, L. Lacaze, An asymptotic description of vortex Kelvin modes, J. Fluid Mech., in press

[52] F. Laporte, Simulation numérique appliquée à la caractérisation et aux instabilités des tourbillons de sillage des avions de transport, Ph.D. thesis, Institut National Polytechnique de Toulouse, CERFACS (2002)

[53] L. Lacaze, K. Ryan, S. Le Dizès, Elliptic instability in a batchelor vortex, in preparation

[54] D. Fabre; C. Cossu; L. Jacquin Spatio-temporal development of the long and short-wave vortex-pair instabilities, Phys. Fluids, Volume 12 (2000) no. 5, pp. 1247-1250

[55] F. Holzäpfel; T. Hofbauer; D. Darracq; H. Moet; F. Garnier; C. Ferreira Gago Analysis of wake vortex decay mechanisms in the atmosphere, Aerosp. Sci. Technol., Volume 7 (2003), pp. 263-275

[56] M. Mokry The vortex merger factor in aircraft wake turbulence, Aeronaut. J., Volume 109 (2005), pp. 13-22

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Unsteadiness, instability and turbulence in trailing vortices

Laurent Jacquin; David Fabre; Denis Sipp; ...

C. R. Phys (2005)


Various aspects of fluid vortices

Ivan Delbende; Thomas Gomez; Christophe Josserand; ...

C. R. Méca (2004)


Interaction of exhaust jets and aircraft wake vortices: small-scale dynamics and potential microphysical-chemical transformations

Roberto Paoli; François Garnier

C. R. Phys (2005)