In a first part, this paper describes radar experiments aimed at probing the sea surface from the coast. To capture small-scale changes in a coastal environment, a flexible high resolution, Doppler L-band radar with high resolution in range has been used. The data exhibit significant sensitivity to current and wind, which justifies the development of a model for inversion. The second part of the paper is thus devoted to our first attempt to model radar echoes, in order to accurately describe the influence of the geophysical parameters of interest. Here, the focus is put on waves generated by a local wind. The key point consists in taking properly into account non-linear hydrodynamic interactions between waves to generate a realistic moving sea surface. From the electromagnetic point of view, since standard low-frequency approximations no longer hold at L-band, a small-slope approximation has been implemented to compute the backscattered field. Numerical results show that for light winds (less than 5 m s−1) the model correctly predicts the behaviour of the data with respect to wind speed and direction.
Dans une première partie, cet article décrit une expérience destinée à sonder la surface de la mer à l'aide d'un radar côtier. Afin de saisir les fluctuations à petite échelle dûes à l'environnement côtier, ce radar dispose d'une haute résolution en distance et fonctionne en mode Doppler en bande L. Les données ainsi enregistrées ont montré une sensibilité intéressante vis à vis du courant de surface ou du vent, justifiant le développement d'un modèle pour l'inversion. La seconde partie du papier est donc consacrée à notre première tentative pour modéliser l'écho radar, avec l'objectif de décrire correctement l'influence du vent local et des vagues qui y sont associées. Le point clé consiste à prendre en compte avec précision les interactions non-linéaires hydrodynamiques entre vagues pour engendrer des échantillons réalistes de surface de mer en mouvement. Sur le plan électromagnétique, comme les approximations basses-fréquences classiquement utilisées ne sont plus valables en bande L, nous avons mis au point une approximation faibles-pentes pour estimer le champ rétrodiffusé. Les résultats numériques montrent que pour des vents faibles (inférieurs à 5 m s−1), le modèle décrit correctement le comportement des données en fonction de la force et de la direction du vent.
Mot clés : Télédétection, Surface de mer, Spectres Doppler, Bande L
Marc Saillard 1; Philippe Forget 1; Gabriel Soriano 2; Maminirina Joelson 3; Pierre Broche 1; Philip Currier 4
@article{CRPHYS_2005__6_6_675_0, author = {Marc Saillard and Philippe Forget and Gabriel Soriano and Maminirina Joelson and Pierre Broche and Philip Currier}, title = {Sea surface probing with {L-band} {Doppler} radar: experiment and theory}, journal = {Comptes Rendus. Physique}, pages = {675--682}, publisher = {Elsevier}, volume = {6}, number = {6}, year = {2005}, doi = {10.1016/j.crhy.2005.06.008}, language = {en}, }
TY - JOUR AU - Marc Saillard AU - Philippe Forget AU - Gabriel Soriano AU - Maminirina Joelson AU - Pierre Broche AU - Philip Currier TI - Sea surface probing with L-band Doppler radar: experiment and theory JO - Comptes Rendus. Physique PY - 2005 SP - 675 EP - 682 VL - 6 IS - 6 PB - Elsevier DO - 10.1016/j.crhy.2005.06.008 LA - en ID - CRPHYS_2005__6_6_675_0 ER -
%0 Journal Article %A Marc Saillard %A Philippe Forget %A Gabriel Soriano %A Maminirina Joelson %A Pierre Broche %A Philip Currier %T Sea surface probing with L-band Doppler radar: experiment and theory %J Comptes Rendus. Physique %D 2005 %P 675-682 %V 6 %N 6 %I Elsevier %R 10.1016/j.crhy.2005.06.008 %G en %F CRPHYS_2005__6_6_675_0
Marc Saillard; Philippe Forget; Gabriel Soriano; Maminirina Joelson; Pierre Broche; Philip Currier. Sea surface probing with L-band Doppler radar: experiment and theory. Comptes Rendus. Physique, Volume 6 (2005) no. 6, pp. 675-682. doi : 10.1016/j.crhy.2005.06.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.06.008/
[1] J. Geophys. Res. C, 100 (1995), pp. 2591-2611
[2] J. Geophys. Res. C, 102 (1997), pp. 21131-21146
[3] J. Geophys. Res. C, 104 (1999), pp. 3243-3263
[4] Wave Scattering from Statistically Rough Surfaces, Pergamon, New York, 1979
[5] J. Phys. Oceanogr., 7 (1977), pp. 11-21
[6] IEEE Trans. Geosci. Remote Sensing, 39 (2001), pp. 2411-2420
[7] IEEE Trans. Antennas Propagat., 50 (2002), pp. 417-425
[8] IEEE Trans. Geosci. Remote Sensing, 41 (2003), pp. 2287-2293
[9] J. Fluid Mech., 205 (1989), pp. 135-161
[10] P. Forget, M. Saillard, P. Broche, J. Geophys. Res. (2005), in press
[11] D.E. Barrick, Remote sensing of sea state by radar, U.S. Gov. Printing Office, Washington, DC, 1972
[12] et al. Radio Sci., 16 (1981), pp. 917-925
[13] Radio Sci., 22 (1987), pp. 69-75
[14] J. Geophys. Res. C, 79 (1974), pp. 5031-5037
[15] Boundary Layer Meteorolog., 13 (1978), pp. 61-85
[16] J. Appl. Mech. Tech. Phys., 51 (1968), pp. 269-306
[17] Radio Sci., 26 (1991), pp. 51-71
[18] IEEE Trans. Geophys. Remote Sensing, 38 (2000), pp. 1616-1624
[19] IEEE Trans. Antennas Propag., 52 (2004), pp. 2799-2802
[20] Wave Scattering from Rough Surfaces, Springer-Verlag, Berlin, 1994
[21] Phys. Rev. B, 50 (1994), pp. 14546-14553
Cited by Sources:
Comments - Policy