Comptes Rendus
Modelling of electromagnetic wave interactions with the human body
Comptes Rendus. Physique, Volume 6 (2005) no. 6, pp. 585-594.

Electromagnetic modelling plays a more and more important role in the study of complex systems involving Maxwell phenomena, such as the interactions of radiowaves with the human body. Simulation then becomes a credible means in decision making, related to the engineering of complex electromagnetic systems. To increase confidence in the models with respect to reality, validation and uncertainty estimation methods are needed. The different dimensions of model validation are illustrated through dosimetry, i.e., quantification of human exposure to electromagnetic waves.

Les modèles électromagnétiques issus des équations de Maxwell gagnent en maturité et font de la simulation une alternative crédible dans les prises de décision liées aux systèmes électromagnétiques complexes. Pour renforcer la confiance en les modèles vis-à-vis de la réalité, des méthodes de validation et d'estimation des incertitudes sont nécessaires. Différentes dimensions de la problématique de la validation des modèles sont abordées à travers la dosimétrie, ou quantification de l'exposition des personnes au champ électromagnétique.

Published online:
DOI: 10.1016/j.crhy.2005.07.003
Keywords: Electromagnetic wave interactions, Dosimetry, Validation, Uncertainty
Mot clés : Interactions ondes électromagnétiques, Dosimétrie, Validation, Incertitudes

Man-Faï Wong 1; Joe Wiart 1

1 France Télécom Research & Development, 92794 Issy-les-Moulineaux, France
@article{CRPHYS_2005__6_6_585_0,
     author = {Man-Fa{\"\i} Wong and Joe Wiart},
     title = {Modelling of electromagnetic wave interactions with the human body},
     journal = {Comptes Rendus. Physique},
     pages = {585--594},
     publisher = {Elsevier},
     volume = {6},
     number = {6},
     year = {2005},
     doi = {10.1016/j.crhy.2005.07.003},
     language = {en},
}
TY  - JOUR
AU  - Man-Faï Wong
AU  - Joe Wiart
TI  - Modelling of electromagnetic wave interactions with the human body
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 585
EP  - 594
VL  - 6
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.07.003
LA  - en
ID  - CRPHYS_2005__6_6_585_0
ER  - 
%0 Journal Article
%A Man-Faï Wong
%A Joe Wiart
%T Modelling of electromagnetic wave interactions with the human body
%J Comptes Rendus. Physique
%D 2005
%P 585-594
%V 6
%N 6
%I Elsevier
%R 10.1016/j.crhy.2005.07.003
%G en
%F CRPHYS_2005__6_6_585_0
Man-Faï Wong; Joe Wiart. Modelling of electromagnetic wave interactions with the human body. Comptes Rendus. Physique, Volume 6 (2005) no. 6, pp. 585-594. doi : 10.1016/j.crhy.2005.07.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.07.003/

[1] ICNIRP Guidelines Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Phys., Volume 74 (1998) no. 4

[2] CENELEC EN50361, Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz), 2001

[3] CENELEC EN50383, Basic standard for the calculation and measurement of electromagnetic field strength and SAR related to human exposure from radio base stations and fixed terminal stations for wireless telecommunication systems (110 MHz to 40 GHz), 2002

[4] A. Taflove Computational Electrodynamics. The Finite Difference Time Domain Method, Artech House, Boston, 1995

[5] J. Wiart; S. Chaillou; Z. Altman; S. Drago Calculation of the power deposited in tissues close to a handset antenna using a non-uniform FDTD, Second World Congress Following BEMS (1999)

[6] M. Okoniewski; E. Okoniewska; M.A. Stuchly Three-dimensional subgridding algorithm for FDTD, IEEE Trans. Antennas Propagat., Volume 45 (1997) no. 3, pp. 422-429

[7] P. Thoma; T. Weiland A consistent sungridding scheme for the finite difference time domain method, Internat. J. Numer. Model., Volume 9 (1996), pp. 359-374

[8] S. Chaillou; J. Wiart; W. Tabbara A subgridding scheme based on mesh nesting for the FDTD method, Microwave Opt. Technol. Lett., Volume 22 (1999) no. 3, pp. 211-214

[9] M. Bonilla; M. Wong; V. Fouad Hanna A finite element formulation for FDTD subgridding, Microwave Opt. Technol. Lett., Volume 32 (2002) no. 2, pp. 104-108

[10] G. Carat; R. Gillard; J. Citerne; J. Wiart An efficient analysis of planar microwave circuits using a DWT-based Haar MRTD scheme, IEEE Trans. Microwave Theory and Techniques, Volume 48 (2000) no. 12, pp. 2261-2270

[11] M. Marrone; R. Mittra A theoretical study of the stability criteria for hybridized FDTD algorithms for multiscale analysis, IEEE Trans. Antennas Propagat., Volume 52 (2004) no. 8, pp. 2158-2167

[12] N. Chavannes; N. Kuster A novel 3D CPFDTD scheme for modeling grid nonconformally aligned transmitter structures, IEEE Trans. Antennas Propagat., Volume 52 (2004) no. 5, pp. 1324-1334

[13] Headexp, Realistic numerical modelling of human head tissues exposure to electromagnetic waves from mobile phones http://www-sop.inria.fr/caiman/personnel/Stephane.Lanteri/headexp/headexp.html (2003)

[14] T. Weiland Time domain electromagnetic field computation with finite difference methods, Internat. J. Numer. Model., Volume 9 (1996), pp. 295-319

[15] http://www.fcc.gov/fcc-bin/dielec.sh (FCC website, tissues dielectric properties 1997)

[16] J. Wiart Métrologie des interactions des ondes radioélectriques avec les tissus vivants, Bulletin du Bureau National de Métrologie, Volume 2004-3 (2004) no. 126, pp. 48-55

[17] E. Larchevêque, C. Dale, M.F. Wong, J. Wiart, Analysis of electric field averaging for in situ radiofrequency exposure assessment, IEEE Trans. Vehicular Technol., in press

[18] A. Williams; A. Duffy; M. Woolfson; T. Benson A powerful new technique for the quantitative validation of modeled and experimental data, Microwave Optical Technol. Lett., Volume 17 (1998) no. 5, pp. 284-287

[19] J. Rautio The microwave point of view on software validation, IEEE Antennas Propagat. Magazine, Volume 38 (1996) no. 2, pp. 68-71

[20] B. Linot, M.F. Wong, V. Fouad Hanna, O. Picon, A numerical TRL de-embedding technique for the extraction of S-parameters in a 2.5D planar electromagnetic simulator, in: IEEE MTT-S Internat. Microwave Symposium, vol. 2, Orlando, USA, May 1995, pp. 809–812

[21] Z. Lei; W. Ke Short-open calibration technique for field theory-based parameter extraction of lumped elements of planar integrated circuits, IEEE Trans. Microwave Theory and Techniques, Volume 50 (2002) no. 8, pp. 1861-1869

[22] A. Gati, Y. Adane, M. Wong, J. Wiart, V. Fouad Hanna, Inverse characterization of sources for the study of the environment interaction with electromagnetic fields, C. R. Physique (2005), in this issue

[23] R. Matschek, A geometrical optics and uniform theory of diffraction based ray tracing optimisation by a genetic algorithm, C. R. Physique (2005), in this issue

[24] J. Wang; O. Fujiwara An examination of the theory and practices of planar near-field measurement, IEEE Trans. Antennas Propagat., Volume 36 (1988) no. 6, pp. 746-753

[25] http://www.tsi.enst.fr/adonis/ (Adonis RNRT project website)

[26] A. Hadjem; D. Lautru; C. Dale; M.F. Wong; V. Fouad Hanna; J. Wiart Study of specific absorption rate (SAR) induced in two child head models and in adult heads using mobile phones, IEEE Trans. Microwave Theory and Techniques, Volume 53 (2005) no. 1, pp. 4-11

[27] http://www.tsi.enst.fr/comobio/ (Comobio RNRT project website)

[28] http://www.nlm.nih.gov/research/visible/visible_human.html (The Visible Human Project website)

[29] I. Zubal; C. Harrell; E. Smith; Z. Rattner; G. Gindi; P. Hoffer Computerized 3D segmented human anatomy, Med. Phys., Volume 21 (1994) no. 2, pp. 299-302

Cited by Sources:

Comments - Policy