Comptes Rendus
Neutrinos: precursors of new physics
Comptes Rendus. Physique, Volume 6 (2005) no. 7, pp. 719-728.

Since neutrinos are the only elementary particles that interact only weakly, the study of their properties, albeit experimentally difficult, reflects the true nature of the Weak Interactions. We begin with a historical review, emphasizing the central role of neutrinos in the formulation of the Standard Model. We review the generalizations of the Standard Model needed to accommodate both Dirac and Majorana neutrino masses. The recent experimental findings which demonstrate that neutrinos have tiny masses are discussed. We argue that small neutrino masses as well as the unexpected mixing patterns between the three neutrino flavors give us a glimpse, through the Seesaw mechanism, of physics at or near the Planck scale.

Puisque les neutrinos sont les seules particules élémentaires interagissant uniquement par interaction faible, l'étude de leurs propriétés, difficile expérimentalement, reflète fidèlement la nature de cette force. Une revue historique souligne leur rôle spécifique dans la formulation du modèle standard de la physique des particules. Nous présentons les généralisations de ce modèle nécessaires pour rendre compte de leurs masses (Dirac et Majorana). Nous discutons ensuite les résultats expérimentaux qui ont démontré leur nature massive. Finalement, nous montrons comment les petites masses et les mélanges des trois saveurs de neutrinos peuvent être interprétés par l'intermédiaire du mécanisme de “Seesaw” comme une fenêtre sur la physique à l'échelle de Planck.

Published online:
DOI: 10.1016/j.crhy.2005.07.006
Keywords: Neutrino history, Neutrino mass, Beyond standard model
Mot clés : Histoire du neutrino, Masse du neutrino, Au delà du modèle standard

Pierre Ramond 1

1 Institute for Fundamental Theory, Department of Physics, University of Florida, Gainesville, FL 32611, USA
@article{CRPHYS_2005__6_7_719_0,
     author = {Pierre Ramond},
     title = {Neutrinos: precursors of new physics},
     journal = {Comptes Rendus. Physique},
     pages = {719--728},
     publisher = {Elsevier},
     volume = {6},
     number = {7},
     year = {2005},
     doi = {10.1016/j.crhy.2005.07.006},
     language = {en},
}
TY  - JOUR
AU  - Pierre Ramond
TI  - Neutrinos: precursors of new physics
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 719
EP  - 728
VL  - 6
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.07.006
LA  - en
ID  - CRPHYS_2005__6_7_719_0
ER  - 
%0 Journal Article
%A Pierre Ramond
%T Neutrinos: precursors of new physics
%J Comptes Rendus. Physique
%D 2005
%P 719-728
%V 6
%N 7
%I Elsevier
%R 10.1016/j.crhy.2005.07.006
%G en
%F CRPHYS_2005__6_7_719_0
Pierre Ramond. Neutrinos: precursors of new physics. Comptes Rendus. Physique, Volume 6 (2005) no. 7, pp. 719-728. doi : 10.1016/j.crhy.2005.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.07.006/

[1] A. Franklin; M. Cribier; M. Spiro; D. Vignaud, Westview Press, Paris, 2004 (For a wealth of early neutrino history, read Are There Really Neutrinos? See also La Lumière des Neutrinos, 1995, Éditions du Seuil)

[2] O. Von Baeyer; O. Hahn; L. Meitner Z. Physik, 12 (1911), p. 273

[3] C.D. Ellis; B.A. Wooster Proc. Royal Soc. A, 117 (1927), p. 109

[4] N. Bohr; H.A. Kramers; J.C. Slater Phil. Mag., 47 (1924), p. 785

[5] R. Kronig; W. Heitler; G. Herzberg Naturwiss, 16 (1928), p. 335

[6] P.A.M. Dirac The Development of Quantum Theory, J. Robert Oppenheimer Prize Lecture, Gordon and Breach, New York, 1971

[7] E. Fermi; E. Fermi Z. Physik, 11 (1934), p. 1

[8] F. Perrin Comptes Rendus, 197 (1933), p. 1625

[9] C. Weinheimer, C. R. Physique 6 (2005), in press

[10] B. Pontecorvo, Chalk river Report PD-205, November 1946, unpublished

[11] C.L. Cowan; F. Reines; F.B. Harrison; H.W. Kruse; A.D. McGuire Science, 124 (1956), p. 103

[12] T.D. Lee; C.N. Yang Phys. Rev., 104 (1956), p. 254

[13] A. Salam; L.D. Landau; T.D. Lee; C.N. Yang Phys. Rev., 5 (1957), p. 29

[14] M. Goldhaber; L. Grodzins; A. Sunyar Phys. Rev., 109 (1958), p. 1015

[15] S. Sakata; T. Inoue Progress Theor. Phys., 1 (1946), p. 143

[16] G. Danby; J.M. Gaillard; K. Goulianos; L.M. Lederman; N. Mistry; M. Schwartz; J. Steinberger Phys. Rev. Lett., 9 (1962), p. 36

[17] E.C.G. Sudarshan, R.E. Marshak, The nature of the four-fermi interaction, in: Proceedings, Padua Conference on Mesons and Recently Discovered Particles, 1957

[18] R.P. Feynman; M. Gell-Mann Phys. Rev., 109 (1958), p. 193

[19] S.L. Glashow Nucl. Phys., 22 (1961), p. 579

[20] S. Weinberg Phys. Rev. Lett., 19 (1967), p. 1264

[21] A. Salam Proceedings of the Eighth Nobel Symposium on Elementary Particle Theory, Relativistic Groups, and Analyticity (N. Svartholm, ed.), Almqvist and Wiksell, Stockholm, 1968

[22] Super-Kamiokande Collaboration; S. Fukuda; et al.; Super-Kamiokande Collaboration; S. Fukuda et al. Phys. Rev. Lett., 81 (1998), p. 1562

[23] C. Bouchiat; J. Iliopoulos; Ph. Meyer Phys. Lett. B, 38 (1972), p. 519

[24] C.L. Bennett; et al.; D. Spergel Astrophys. J. Suppl., 148 (2003), p. 1

[25] W. Buchmüller, C. R. Physique 6 (2005), in press

[26] M. Cribier, T. Bowles, C. R. Physique 6 (2005), in press

[27] R. Davis; D. Harmer; K. Hoffman Phys. Rev. Lett., 20 (1968), p. 1205

[28] V. Gribov; B. Pontecorvo Phys. Lett. B, 28 (1969), p. 493

[29] Z. Maki; M. Nakagawa; S. Sakata Prog. Theor. Phys., 28 (1962), p. 247

[30] GALLEX Collaboration; W. Hampel; et al.; SAGE Collaboration; J.N. Abdurashitov et al. Phys. Rev. C, 447 (1999), p. 127

[31] T. Kajita and P. Lipari, C. R. Physique 6 (2005), in press

[32] J. Bouchez, C. R. Physique 6 (2005), in press

[33] The SNO Collaboration; S.N. Ahmed et al. Phys. Rev. Lett., 89 (2002), p. 011301

[34] J.N. Bahcall; M.H. Pinsonneault; S. Turck-Chièze et al. Phys. Rep., 64 (1992), p. 885

[35] The Super-Kamiokande Collaboration; S. Fukuda et al. Phys. Lett. B, 539 (2002), p. 179

[36] The KamLAND Collaboration; K. Eguchi et al. Phys. Rev. Lett., 90 (2003), p. 021802

[37] The K2K Collaboration; M.H. Ahn et al. Phys. Rev. Lett., 90 (2003), p. 041801

[38] The Chooz Collaboration; M. Apollonio; et al.; The Chooz Collaboration; M. Apollonio; et al.; The Chooz Collaboration; M. Apollonio; et al.; The Palo Verde Collaboration; F. Boehm et al. Phys. Rev. Lett., 338 (1998), p. 383

[39] P. Ramond The case for neutrino oscillations invited talk at the Los Alamos Workshop, June 1981. LA-9358-C (unpublished); retroprinted as | arXiv

[40] LSND Collaboration; C. Athanassopoulos; et al.; LSND Collaboration; C. Athanassopoulos et al. Phys. Rev. C, 77 (1996), p. 3082

[41] M.C. Gonzalez-Garcia; M. Maltoni; T. Schwetz Phys. Rev. D, 68 (2003), p. 053007

[42] J.C. Pati; A. Salam Phys. Rev. D, 10 (1974), p. 275

[43] S.L. Glashow; H. Georgi Phys. Rev. Lett., 32 (1974), p. 438

[44] H. Georgi, Invited Talk at Williamsburg Conference, 1975

[45] F. Gürsey; P. Ramond; P. Sikivie Phys. Lett. B, 60 (1976), p. 177

[46] P. Minkowski Phys. Lett. B, 67 (1977), p. 421

[47] T. Yanagida, in Proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, KEK, Japan, February 1979 | arXiv

[48] M. Fukugita; T. Yanagida Phys. Lett. B, 174 (1986), p. 45

Cited by Sources:

Comments - Policy