In this article we report the most recent advances of our knowledge of non-LTE atmospheric emissions gained from the MIPAS spectra on the Envisat satellite. These include improvements in our knowledge: of the collisional processes between the CO2 (1001), (0221), and (0201) vibrational levels; of the nascent distribution and collisional relaxation of the O3 vibrational states; and of the vibrational–vibrational energy transfer rates between H2O(020) and O2. In addition we report: the first evidence of mesospheric CH4 7.6-μm emission; much lower non-LTE populations of the in the daytime stratosphere than previously thought; the first experimental confirmation of the non-LTE excitation of NO(1) in the daytime stratosphere; and the first detection of the CO first hot band non-LTE emission near 4.7 μm.
Dans cet article nous présentons les avancées les plus récentes apportées par les spectres fournis par MIPAS sur le satelitte Envisat pour ce qui concerne les émissions de rayonnement par des molécules atmosphériques hors ETL. Il s'agit du progrès de nos connaissances des processus collisionnels entre les niveaux vibrationnels (1001), (0221), et (0201) de CO2 comme de la distribution initiale et de la relaxation des états vibrationnels de O3 et des transferts vibration-vibration d'énergie entre H2O(020) et O2. De plus, nous présentons : la première mise en évidence de l'émission mésosphérique dans la bande de CH4 vers 7.6-μm ; des populations non-ETL de observées dans la stratosphère pendant le jour beaucoup plus faibles que ce que l'on attendait ; la première confirmation expérimentale de l'excitation non-ETL du NO(1) stratosphérique pendant le jour ; et la première détection de l'émission non-ETL dans la première bande chaude de CO vers 4.7 μm.
Mots-clés : Non-ETL, MIPAS, CO2, O3, H2O, CH4, NO2, NO, CO
Manuel López-Puertas 1; Bernd Funke 1; Sergio Gil-López 1; Miguel Á. López-Valverde 1; Thomas von Clarmann 2; Herbert Fischer 2; Hermann Oelhaf 2; Gabriele Stiller 2; Martin Kaufmann 3; M.E. Koukouli 4; Jean-Marie Flaud 5
@article{CRPHYS_2005__6_8_848_0, author = {Manuel L\'opez-Puertas and Bernd Funke and Sergio Gil-L\'opez and Miguel \'A. L\'opez-Valverde and Thomas von Clarmann and Herbert Fischer and Hermann Oelhaf and Gabriele Stiller and Martin Kaufmann and M.E. Koukouli and Jean-Marie Flaud}, title = {Atmospheric non-local thermodynamic equilibrium emissions as observed by the {Michelson} {Interferometer} for {Passive} {Atmospheric} {Sounding} {(MIPAS)}}, journal = {Comptes Rendus. Physique}, pages = {848--863}, publisher = {Elsevier}, volume = {6}, number = {8}, year = {2005}, doi = {10.1016/j.crhy.2005.07.012}, language = {en}, }
TY - JOUR AU - Manuel López-Puertas AU - Bernd Funke AU - Sergio Gil-López AU - Miguel Á. López-Valverde AU - Thomas von Clarmann AU - Herbert Fischer AU - Hermann Oelhaf AU - Gabriele Stiller AU - Martin Kaufmann AU - M.E. Koukouli AU - Jean-Marie Flaud TI - Atmospheric non-local thermodynamic equilibrium emissions as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) JO - Comptes Rendus. Physique PY - 2005 SP - 848 EP - 863 VL - 6 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2005.07.012 LA - en ID - CRPHYS_2005__6_8_848_0 ER -
%0 Journal Article %A Manuel López-Puertas %A Bernd Funke %A Sergio Gil-López %A Miguel Á. López-Valverde %A Thomas von Clarmann %A Herbert Fischer %A Hermann Oelhaf %A Gabriele Stiller %A Martin Kaufmann %A M.E. Koukouli %A Jean-Marie Flaud %T Atmospheric non-local thermodynamic equilibrium emissions as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) %J Comptes Rendus. Physique %D 2005 %P 848-863 %V 6 %N 8 %I Elsevier %R 10.1016/j.crhy.2005.07.012 %G en %F CRPHYS_2005__6_8_848_0
Manuel López-Puertas; Bernd Funke; Sergio Gil-López; Miguel Á. López-Valverde; Thomas von Clarmann; Herbert Fischer; Hermann Oelhaf; Gabriele Stiller; Martin Kaufmann; M.E. Koukouli; Jean-Marie Flaud. Atmospheric non-local thermodynamic equilibrium emissions as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Comptes Rendus. Physique, Molecular spectroscopy and planetary atmospheres, Volume 6 (2005) no. 8, pp. 848-863. doi : 10.1016/j.crhy.2005.07.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.07.012/
[1] Radiative transfer: Non local thermodynamic equilibrium (J.R. Holton; J. Pyle; J.A. Curry, eds.), Encyclopedia of Atmospheric Sciences, Academic Press, Amsterdam, 2003, pp. 1874-1882
[2] Non-LTE Radiative Transfer in the Atmosphere, World Scientific Publishing Co., Singapore, 2001
[3] Line-by-line radiative excitation model for the non-equilibrium atmosphere: application to CO2 15 μm emission, J. Geophys. Res., Volume 97 (1992), pp. 18083-18117
[4] CO2 non-local thermodynamic equilibrium radiative excitation and infrared dayglow at 4.3 μm: Application to spectral infrared rocket experiment data, J. Geophys. Res., Volume 99 (1994), pp. 10409-10419
[5] Non-local thermodynamic equilibrium in CO2 in the middle atmosphere I. Input data and populations of the mode manifold states, J. Atmos. Solar-Terr. Phys. (1997), pp. 2167-2176
[6] Remote sensing of vertical profiles of atmospheric trace constituents with MIPAS limb-emission spectrometers, Appl. Opt., Volume 35 (1996) no. 16, pp. 2787-2796
[7] European Space Agency, Envisat, MIPAS An instrument for atmospheric chemistry and climate research, ESA Publications Division, ESTEC, The Netherlands, SP-1229, 2000
[8] The CRISTA-2 mission, J. Geophys. Res., Volume 107 (2002) no. D23, p. 8173 | DOI
[9] J.M. Russell III, M.G. Mlynczak, L.L. Gordley, J. Tansock, R. Esplin, An overview of the SABER experiment and preliminary calibration results, in: Proc. SPIE, vol. 3756, 1999, pp. 277–288
[10] Carbon dioxide 4.3-μm emission in the Earth's atmosphere. A comparison between NIMBUS 7 SAMS measurements and non-LTE radiative transfer calculations, J. Geophys. Res., Volume 94 (1989), pp. 13045-13068
[11] Non local thermodynamic equilibrium (LTE) atmospheric limb emission at 4.6 μm I. An update of the CO2 non-LTE radiative transfer model, J. Geophys. Res., Volume 103 (1998), pp. 8499-8513
[12] Non-LTE atmospheric limb radiances at 4.6 μm as measured by UARS/ISAMS II. Analysis of the daytime radiances, J. Geophys. Res., Volume 103 (1998), pp. 8515-8530
[13] The vertical and horizontal distribution of CO2 densities in the upper mesosphere and lower thermosphere as measured by CRISTA, J. Geophys. Res., Volume 107 (2002) no. D23, p. 8182 | DOI
[14] Retrieval of kinetic temperature and carbon dioxide abundance from non-local thermodynamic equilibrium limb emission measurements made by the SABER experiment on the TIMED satellite, Proc. SPIE, vol. 4882, 2002, pp. 162-171
[15] Sensitivity of trace gas abundances retrievals from infrared limb emission spectra to simplifying approximations in radiative transfer modelling, J.Q.S.R.T, Volume 72 (2002) no. 3, pp. 249-280
[16] A generic non-LTE population model for MIPAS–ENVISAT data analysis, Geophys. Res. Abs., Volume 4 (2002)
[17] et al. Mesospheric and lower thermospheric temperature and carbon dioxide volume mixing ratio as measured by MIPAS/Envisat, Geophys. Res. Abs., Volume 6 (2004), p. 04672
[18] S. Gil-López, M. Kaufmann, B. Funke, M. García-Comas, M.E. Koukouli, M. López-Puertas, N. Glatthor, U. Grabowski, M. Höpfner, G.P. Stiller, T. von Clarmann, Retrieval of stratospheric and mesospheric O3 from high resolution MIPAS spectra at 15 and 10 μm, Adv. Spa. Res. (2005), in press
[19] Satellite observations of daytime and nighttime ozone in the mesosphere and lower thermosphere, J. Geophys. Res., Volume 108 (2003) no. D9, p. 4272 | DOI
[20] M. Kaufmann, S. Gil-López, M. López-Puertas, B. Funke, M. García-Comas, M.E. Koukouli, N. Glatthor, U. Grabowski, M. Höpfner, G.P. Stiller, T. von Clarmann, L. Hoffmann, M. Riese, Vibrationally excited ozone in the middle atmosphere, J. Atmos. Solar Terr. Phys., 2005, submitted for publication
[21] Vibrational relaxation of ozone in O3O2 and O3N2 gas mixtures from infrared double-resonance measurements in the 200–300 K temperature range, J. Chem. Phys., Volume 96 (1992), p. 5773
[22] Vibrational energy transfer in ozone excited into the (101) state from double-resonance measurements, J. Chem. Phys., Volume 101 (1994), p. 8636
[23] Non-local thermodynamic equilibrium in H2O 6.9 μm emission as measured by the Improved Stratospheric and Mesospheric Sounder, J. Geophys. Res., Volume 103 (1998), pp. 31293-31308
[24] Evidence of non-LTE effects in mesospheric water vapour from spectrally-resolved emissions observed by CIRRIS-1A, Geophys. Res. Lett., Volume 26 (1999), pp. 67-70
[25] Evidence of H2O non-local thermodynamic equilibrium emission near 6.4 μm as measured by CRISTA-1, J. Geophys. Res., Volume 105 (2000), pp. 29003-29022
[26] M.E. Koukouli, M. López-Puertas, B. Funke, S. Gil-López, M. Kaufmann, M. Milz, T. von Clarmann, G.P. Stiller, Water vapour 6.3 μm non-local thermodynamic equilibrium emissions as measured by MIPAS/Envisat, J. Geophys. Res. (2005), submitted for publication
[27] Rate coefficient for collisional removal of O2(, ) with O atoms at 240 K, Eos Trans. AGU, Volume 85 (2004) no. 47 (Fall Meet. Suppl., Abstract SA41A-1032)
[28] Observations of CH4 and N2O by the NIMBUS 7 SAMS: A comparison with in situ data and two dimensional numerical model calculations, J. Geophys. Res., Volume 89 (1984) no. D4, pp. 5263-5279
[29] et al. Measurements of methane and nitrous oxide distributions by the improved stratospheric and mesospheric sounder: Retrieval and validation, J. Geophys. Res., Volume 101 (1996), pp. 9843-9871
[30] Non-local thermodynamic equilibrium in N2O, CH4, and HNO3 in the middle atmosphere, J. Atmos. Solar-Terr. Phys., Volume 59 (1997), pp. 2167-2176
[31] Non-LTE populations of CH4 and N2O for MIPAS/Envisat-1, J. Atmos. Solar-Terr. Phys., Volume 60 (1998), pp. 1631-1647
[32] Evidence for CH4 7.6 μm non-local thermodynamic equilibrium emission in the mesosphere, Geophys. Res. Lett., Volume 32 (2005), p. L04805 | DOI
[33] Evidence from the limb infrared monitor of the stratosphere for nonlocal thermodynamic equilibrium in the mode of mesospheric water vapour and the mode of stratospheric nitrogen dioxide, J. Geophys. Res., Volume 94 (1989) no. D13, pp. 16323-16342
[34] A new airglow layer in the stratosphere, Geophys. Res. Lett., Volume 23 (1996) no. 24, pp. 3623-3626
[35] The Nimbus 7 LIMS version 6 radiance conditioning and temperature retrieval methods and results, J. Quant. Spectrosc. Radiat. Transfer, Volume 86 (2004), pp. 395-424
[36] Retrieval of stratospheric NOx from 5.3 and 6.2 μm non-LTE emissions measured by MIPAS on ENVISAT, J. Geophys. Res., Volume 110 (2005), p. D09302 | DOI
[37] The role of solar radiation in atmospheric chemistry (P. Boule, ed.), Handbook of Environmental Chemistry, Springer-Verlag, Heidelberg, 1998, pp. 1-26
[38] M. López-Puertas, Assessment of NO2 non-LTE effects in MIPAS spectra, Tech. Rep., European Space Agency, 1997. Final Report of ESA Contract 12054/96/NL/CN
[39] Nonlocal thermodynamic equilibrium effects in stratospheric NO and implications for infrared remote sensing, Appl. Opt., Volume 26 (1987) no. 22, pp. 4747-4754
[40] Nonlocal thermodynamic equilibrium vibrational, rotational, and spin state distribution of NO() under quiescent atmospheric conditions, J. Geophys. Res., Volume 105 (2000) no. D4, pp. 4409-4426
[41] B. Funke, et al., CO in the middle atmosphere measured with MIPAS/ENVISAT, Geophys. Res. Abstracts, 6, 04358, SRef-ID: 1607-7962/gra/EGU04-A-04358, 2004
[42] B. Funke, et al., Carbon monoxide observations by MIPAS/Envisat during the major warming event in September/October 2002, J. Geophys. Res. (2005), submitted for publication
Cited by Sources:
Comments - Policy