[Surveillance de la pollution troposphérique par spectroscopie infrarouge à partir d'une orbite géostationnaire]
Dans cet article nous présentons le « Geostationary Fourier Imaging Spectrometer » (GeoFIS), un nouvel instrument satellite qui a été proposé pour surveiller les polluants troposphériques les plus importants (O3, CO) afin d'améliorer la précision des prédictions fournies par les modèles de la chimie troposphérique. La résolution horizontale de GeoFIS est de
This paper presents the Geostationary Fourier Imaging Spectrometer (GeoFIS), a new satellite instrument that has been proposed to monitor tropospheric key pollutants (O3, CO) in order to improve the predictive capability of tropospheric chemistry models. The horizontal resolution of GeoFIS is about
Mots-clés : Troposphère, Pollution, Qualité de l'air, Infrarouge, Spectroscopie, Orbite géostationnaire
Johannes Orphal 1 ; Gilles Bergametti 1 ; Benoît Beghin 2 ; Philippe-Jean Hébert 2 ; Tilman Steck 3 ; Jean-Marie Flaud 1
@article{CRPHYS_2005__6_8_888_0, author = {Johannes Orphal and Gilles Bergametti and Beno{\^\i}t Beghin and Philippe-Jean H\'ebert and Tilman Steck and Jean-Marie Flaud}, title = {Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit}, journal = {Comptes Rendus. Physique}, pages = {888--896}, publisher = {Elsevier}, volume = {6}, number = {8}, year = {2005}, doi = {10.1016/j.crhy.2005.09.003}, language = {en}, }
TY - JOUR AU - Johannes Orphal AU - Gilles Bergametti AU - Benoît Beghin AU - Philippe-Jean Hébert AU - Tilman Steck AU - Jean-Marie Flaud TI - Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit JO - Comptes Rendus. Physique PY - 2005 SP - 888 EP - 896 VL - 6 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2005.09.003 LA - en ID - CRPHYS_2005__6_8_888_0 ER -
%0 Journal Article %A Johannes Orphal %A Gilles Bergametti %A Benoît Beghin %A Philippe-Jean Hébert %A Tilman Steck %A Jean-Marie Flaud %T Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit %J Comptes Rendus. Physique %D 2005 %P 888-896 %V 6 %N 8 %I Elsevier %R 10.1016/j.crhy.2005.09.003 %G en %F CRPHYS_2005__6_8_888_0
Johannes Orphal; Gilles Bergametti; Benoît Beghin; Philippe-Jean Hébert; Tilman Steck; Jean-Marie Flaud. Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit. Comptes Rendus. Physique, Molecular spectroscopy and planetary atmospheres, Volume 6 (2005) no. 8, pp. 888-896. doi : 10.1016/j.crhy.2005.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.09.003/
[1] Photochemistry of Air Pollution, Academic Press, New York, 1961
[2] Chemistry of the Upper and Lower Atmosphere, Academic Press, New York, 1999
[3] Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley and Sons, New York, 1997
[4] The Geostationary Tropospheric Pollution Explorer (GeoTROPE) mission: objectives and requirements, Advances in Space Research, Volume 34 (2004), pp. 682-687
[5] Remote Sensing by Fourier Transform Spectrometry, John Wiley and Sons, New York, 1992
[6] Atmospheric radiative transfer modelling: a summary of the AER codes, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 91 (2005), pp. 233-244
[7] The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 96 (2005), pp. 139-204
[8] The 1997 spectroscopic GEISA databank, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 62 (1999), pp. 205-254
[9] Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, Singapore, 2000
[10] Infrared spectroscopy and the terrestrial atmosphere, Comptes Rendus de l'Académie des Sciences (Paris), Volume 5 (2004), pp. 259-271
[11] Remote sensing of CO, CH4 and O3 using a space-borne nadir-viewing interferometer, Journal of Geophysical Research D, 108 (1998), pp. 18999-19013
[12] Tropospheric emission spectrometer for the Earth Observing System's Aura satellite, Applied Optics, Volume 40 (2001), pp. 2356-2367
[13] Remote sensing of trace gases in the mid-infrared spectral region from a nadir view, Applied Optics, Volume 34 (1995), pp. 467-479
[14] The Geostationary Fourier Imaging Spectrometer (GeoFIS) as part of the Geostationary Tropospheric Pollution Explorer (GeoTROPE) mission: objectives and capabilities, Advances in Space Research, Volume 34 (2004), pp. 688-693
[15] H. Kelder, et al., Composition of the Atmosphere: Progress to Applications in the user CommunITY (CAPACITY), Final report to ESA, Noordwijk, 2005
[16] J. Lelieveld, Geostationary satellite observations for monitoring atmospheric composition and chemistry applications, Final report to EUMETSAT, Darmstadt, 2003
[17] The Karlsruhe Optimized and Precise Radiative transfer Algorithm (KOPRA), G.P. Stiller (Editor) with contributions from T. von Clarmann, A. Dudhia, G. Echle, B. Funke, N. Glatthor, F. Hase, M. Höpfner, S. Kellmann, H. Kemnitzer, M. Kuntz, A. Linden, M. Linder, G.P. Stiller, S. Zorn, Forschungszentrum Karlsruhe, Wissenschaftliche Berichte, Bericht Nr. 6487, 2000
[18] Remote sensing of the middle atmosphere with MIPAS (K. Schäfer; O. Lado-Bordowsky; A. Comerón; R.H. Picard, eds.), Remote Sensing of Clouds and the Atmosphere, vol. VII, Proceedings of SPIE, vol. 4882, SPIE, Bellingham, WA, 2003, pp. 172-183
[19] Non-LTE studies for the analysis of MIPAS–ENVISAT data (K. Schäfer; O. Lado-Bordowsky; A. Comerón; M.R. Carleer; J.S. Fender, eds.), Remote Sensing of Clouds and the Atmosphere, vol. VI, Proceedings of SPIE, vol. 4539, SPIE, 2002, pp. 381-395
[20] Methods for determining regularization for atmospheric retrieval problems, Applied Optics, Volume 41 (2002), pp. 1788-1797
[21] C. Clerbaux, P.-F. Coheur, J. Hadji-Lazaro, S. Turquety, Capabilities of infrared sounder observations for monitoring atmospheric composition and chemistry applications, Final report to EUMETSAT, Darmstadt, 2003
[22] Sensing of air quality from geostationary orbit, Proceedings of the 2002 EUMETSAT Meteorological Satellite Conference, EUMETSAT, Darmstadt, 2003, pp. 89-96 (ISBN 92-9119-049-8)
[23] The GeoStationary Scanning Imaging Absorption Spectrometer (GeoSCIA) as part of the GeoStationary Tropospheric Pollution Explorer (GeoTROPE) mission: requirements, concepts and capabilities, Advances in Space Research, Volume 34 (2004), pp. 694-699
[24] Microwindow selection for high-spectral-resolution sounders, Applied Optics, Volume 41 (2002), pp. 3665-3673
[25] Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection, Journal of Geophysical Research, Volume 109 (2004), p. D09308 | DOI
[26] V.-H. Peuch, Personal communication, 2005
[27] P.-J. Hebert, Phase 0 GeoFIS: Synthèse et dimensionnement, CNES document Ref. DCT/SI/IN/2005-051, Toulouse, 2005
[28] High resolution infrared spectroscopy of the Sun and the Earth's atmosphere from space, Mikrochim. Acta Wien, Volume III (1987), pp. 189-214
[29] H. Kobayashi (Ed.), Interferometric Monitor for Greenhouse Gases (IMG), Project Technical Report, Central Research Institute of Electric Power Industry, Komae Research Laboratory, Atmospheric Science Department, Tokyo, Japan, 1999
[30] et al. Atmospheric Chemistry Experiment (ACE): Mission overview, Geophysical Research Letters, Volume 32 (2005), p. L15S01 | DOI
[31] D. Blumstein, G. Chalon, T. Carlier, C. Buil, P. Hébert, T. Maciaszek, G. Ponce, T. Phulpin, B. Tournier, D. Siméoni, IASI instrument: Technical overview and measured performances, SPIE 2004-5543-22, 2004
[32] F. Rocher, T. Phulpin (CNES), Etude de la nébulosité, personal communication, 2005
[33] Establishing a GMES capacity by 2008 (Action Plan (2004–2008)), Communication from the Commission to the European Parliament and the Council, EU COM/2004/65, Brussels, 2004
- Rovibrational analysis of AlCO3, OAlO2, and HOAlO2 for possible atmospheric detection, The Journal of Chemical Physics, Volume 160 (2024) no. 21 | DOI:10.1063/5.0212147
- Assessment of global and regional PM10 CAMSRA data: comparison to observed data in Morocco, Environmental Science and Pollution Research, Volume 28 (2021) no. 23, p. 29984 | DOI:10.1007/s11356-021-12783-3
- RF intensity modulated mid-IR light source based on dual-frequency optical parametric oscillation, Optics Express, Volume 27 (2019) no. 4, p. 4907 | DOI:10.1364/oe.27.004907
- The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality, Atmospheric Measurement Techniques, Volume 7 (2014) no. 7, p. 2185 | DOI:10.5194/amt-7-2185-2014
- Toward the next generation of air quality monitoring: Ozone, Atmospheric Environment, Volume 80 (2013), p. 571 | DOI:10.1016/j.atmosenv.2013.07.007
- A geostationary thermal infrared sensor to monitor the lowermost troposphere: O3 and CO retrieval studies, Atmospheric Measurement Techniques, Volume 4 (2011) no. 2, p. 297 | DOI:10.5194/amt-4-297-2011
- A thermal infrared instrument onboard a geostationary platform for CO and O3 measurements in the lowermost troposphere: Observing System Simulation Experiments (OSSE), Atmospheric Measurement Techniques, Volume 4 (2011) no. 8, p. 1637 | DOI:10.5194/amt-4-1637-2011
- Using Thermal Infrared Absorption and Emission to Determine Trace Gases, The Remote Sensing of Tropospheric Composition from Space (2011), p. 123 | DOI:10.1007/978-3-642-14791-3_3
Cité par 8 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier