We propose a short overview of a few selected issues of magnetism in reduced dimensions, which are the most relevant to set the background for more specialized contributions to the present Special Issue. Magnetic anisotropy in reduced dimensions is discussed first, on a theoretical basis, then with experimental reports and views from surface to single-atom anisotropy. Then, conventional magnetization states are reviewed, including macrospins, single domains, multidomains, and domain walls in stripes. Dipolar coupling is examined for lateral interactions in arrays, and for interlayer interactions in films and dots. Finally thermally-assisted magnetization reversal and superparamagnetism are presented. For each topic we have sought a balance between well established knowledge and recent developments.
Nous proposons un panorama de quelques aspects du magnétisme en dimensions réduites, appropriés comme toile de fond pour les articles plus spécialisés de ce numéro spécial. L'anisotropie magnétique en dimensions réduites est discutée, sur le plan théorique, puis appuyée par des exemples, allant des surfaces aux atomes individuels. Les configurations d'aimantation les plus courantes sont ensuite décrites : macrospins, monodomaines, multidomaines, parois dans des bandes. Les couplages magnétiques, essentiellement dipolaires, sont décrit pour des réseaux et pour des bi-couches. Enfin nous présentons les effets de l'activation thermique, de la baisse de coercitivité jusqu'au superparamagnétisme. Pour chaque aspect nous avons recherché un équilibre entre résultats établis et développements récents.
Mots-clés : Nanomagnétisme, Micromagnétisme, Anisotropie magnétique, Superparamagnétisme, Dimension réduite
Olivier Fruchart 1; André Thiaville 2
@article{CRPHYS_2005__6_9_921_0, author = {Olivier Fruchart and Andr\'e Thiaville}, title = {Magnetism in reduced dimensions}, journal = {Comptes Rendus. Physique}, pages = {921--933}, publisher = {Elsevier}, volume = {6}, number = {9}, year = {2005}, doi = {10.1016/j.crhy.2005.10.011}, language = {en}, }
Olivier Fruchart; André Thiaville. Magnetism in reduced dimensions. Comptes Rendus. Physique, Spintronics, Volume 6 (2005) no. 9, pp. 921-933. doi : 10.1016/j.crhy.2005.10.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.10.011/
[1] Magnetism in ultrathin transition metal films (K.H.J. Buschow, ed.), Handbook of Magnetic Materials, vol. 7, Elsevier Science Publishers B.V., North-Holland, 1993, pp. 1-96 (Chapter 1)
[2] Surface and 2D magnetism, J. Phys.: Condens. Matter, Volume 4 (1992), p. 8395
[3] Magnetism in thin films, J. Phys.: Condens. Matter, Volume 11 (1999), pp. 9495-9515
[4] A. Schuhl, Spin-dependent transport (2005)
[5] The magnetic anisotropy and spin reorientation of nanostructures and nanoscale films, J. Phys.: Condens. Matter, Volume 16 (2004), p. R603-R636
[6] Anisotropie magnétique superficielle et surstructures d'orientation, J. Phys. Rad., Volume 15 (1954), pp. 225-239
[7] Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers, Phys. Rev. B, Volume 39 (1989), pp. 865-868
[8] J. Phys.: Condens. Matter, 10 (1998), pp. 3239-3253
[9] Phys. Rev. B, 63 (2001), p. 144409
[10] Flat ferromagnetic exitaxial 48Ni/52Fe(111) films of few atomic layers, Phys. Status Solidi, Volume 27 (1968), p. 313
[11] Magnetic anisotropy in metallic ultrathin films and related experiments ion cobalt films, J. Appl. Phys., Volume 64 (1988) no. 10, pp. 5336-5341
[12] Phys. Status Solidi, 19 (1967), p. 65
[13] Ferromagnetism near surfaces and in thin films, Appl. Phys., Volume 3 (1974), p. 161
[14] Orientational and structural dependence of magnetic anisotropy of Cu/Ni/Cu sandwiches: Misfit interface anisotropy, J. Appl. Phys., Volume 75 (1994), p. 6424
[15] The correlation between mechanical stress and magnetic anisotropy in ultrathin films, Rev. Prog. Phys., Volume 62 (1999), pp. 809-858
[16] Stress, strain and magnetostriction in epitaxial films, J. Phys.: Condens. Matter, Volume 14 (2002), pp. 4165-4176
[17] Nonlinear magnetoelastic anisotropy in Cu/Ni/Cu/Si(001) films, J. Appl. Phys., Volume 85 (1999) no. 8, pp. 5282-5284
[18] Magnetoelastic effects in ultrathin epitaxial Ni films: an ab initio study, J. Magn. Magn. Mater., Volume 222 (2000), p. L245-L250
[19] Magnetoelastic coupling in Ni and Fe monolayers on Cu(001), J. Appl. Phys., Volume 87 (2000) no. 9, pp. 5920-5922
[20] Evidence for strong surface magnetoelastic anisotropy in epitaxial Cu/Ni/Cu(001) sandwiches, Phys. Rev. B, Volume 53 (1996), p. R1729
[21] Microscopic origin of magnetic anisotropy in Au/Co/Au probed with X-ray magnetic circular dichroism, Phys. Rev. Lett., Volume 75 (1995) no. 20, pp. 3753-3755
[22] Magnetic and structural properties of isolated and assembled clusters, Surf. Sci. Rep., Volume 56 (2005), pp. 189-275
[23] Epitaxial self-organization: from surfaces to magnetic materials, C. R. Physique, Volume 6 (2005) no. 1, pp. 61-73
[24] Self-organization on surfaces: foreword, C. R. Physique, Volume 6 (2005) no. 1, pp. 3-9
[25] Magnetic moments in rough Fe surfaces, Europhys. Lett., Volume 20 (1992) no. 1, pp. 65-70
[26] Morphology-induced oscillations of the magnetic anisotropy in ultrathin Co films, Phys. Rev. Lett., Volume 76 (1996), pp. 1940-1943
[27] Electronic states and magnetism of monoatomic Co and Cu wires, Phys. Rev. B, Volume 61 (2000) no. 8, p. R5133-R5136
[28] Oscillatory magnetic anisotropy in one-dimensional atomic wires, Phys. Rev. Lett., Volume 93 (2004) no. 7, p. 077203
[29] P. Gambardella, Magnetism in monatomic metal wires, J. Phys.: Condens. Matter 15 (S2533–S2546)
[30] Ferromagnetism in one-dimensional monoatomic metal chains, Nature, Volume 416 (2002), pp. 301-304
[31] Giant magnetic anisotropy of single cobalt atoms and nanoparticles, Science, Volume 300 (2003) no. 5622, pp. 1130-1133
[32] Magnetic anisotropy from single atoms to large monodomain islands on a metal surface, C. R. Physique, Volume 6 (2005) no. 1, pp. 75-87
[33] Phys. Rev. Lett., 90 (2003), p. 226402
[34] Phys. Rev. Lett., 86 (2001), pp. 4676-4679
[35] Magnetic Domains. The Analysis of Magnetic Microstructures, Springer, Berlin, 1999
[36] On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach, J. Magn. Magn. Mater., Volume 263 (2003), p. L1-L9
[37] Philos. Mag., 36 (1945), p. 803
[38] Demagnetizing energies of uniformly magnetized rectangular blocks, Proc. Leeds Philos. Liter. Soc., Volume 6 (1954), p. 191
[39] Demagnetizing factors for rectangular ferromagnetic prisms, J. Appl. Phys., Volume 83 (1998) no. 6, pp. 3432-3434
[40] G. Rowlands, Ph.D. thesis, University of Leeds, Leeds, 1956
[41] J. Phys. Soc. Jpn., 17 (1956), p. 543
[42] The demagnetizing energies of a uniformly magnetized cylinder with an elliptic cross-section, J. Magn. Magn. Mater., Volume 267 (2003), pp. 373-385
[43] On the calculation of acoustic radiation impedance of polygonal-shaped apertures, J. Acoust. Soc. Am., Volume 92 (1992) no. 5, pp. 2961-2963
[44] A mechanism of magnetic hysteresis in heterogeneous alloys, Philos. Trans. Roy. Soc. London Ser. A, Volume 240 (1948), pp. 599-642
[45] Coherent rotation of magnetization in three dimensions: a geometrical approach, Phys. Rev. B, Volume 61 (2000) no. 18, pp. 12221-12232
[46] Classical and quantum magnetization reversal studies in nanometer-sized particles and clusters (I. Prigogine; S.A. Rice, eds.), Adv. Chem. Phys., vol. 118, Wiley, 2001, pp. 99-190
[47] J.C. Slonczewski, Theory of magnetic hysteresis in films and its applications to computers, Research Memo RM 003.111.224, IBM Research Center, Poughkeepsie, NY, 1956
[48] Phys. Rev. Lett., 73 (1994), pp. 1986-1989
[49] Thermal fluctuations of a single-domain particle, Phys. Rev., Volume 130 (1963), pp. 1677-1686
[50] Nature Mater., 2 (2003), pp. 524-527
[51] Phys. Rev., 70 (1946), pp. 965-971
[52] Introduction to the Theory of Ferromagnetism, Clarendon Press, Oxford, 1996
[53] Magnetization processes in ferromagnetic cubes, J. Appl. Phys., Volume 64 (1988) no. 3, pp. 1347-1357
[54] Magnetic states of small cubic particles with uniaxial anisotropy, J. Magn. Magn. Mater., Volume 190 (1998), pp. 332-348
[55] Phys. Rev. Lett., 83 (1999), pp. 1042-1045
[56] Phase transitions in planar magnetic nanostructures, Appl. Phys. Lett., Volume 72 (1998) no. 16, pp. 2041-2043
[57] Magnetic ground state of a thin-film element, IEEE Trans. Magn., Volume 36 (2001) no. 6, p. 3886
[58] IEEE Trans. Magn., 27 (1991), pp. 4775-4777
[59] Phys. Status Solidi A, 170 (1998), pp. 125-135
[60] Configurational anisotropy in nanomagnets, Phys. Rev. Lett., Volume 81 (1998) no. 24, pp. 5414-5417
[61] J. Appl. Phys., 93 (2003), pp. 7891-7893
[62] Property variation with shape in magnetic nanoelements, J. Phys. D: Appl. Phys., Volume 33 (2000), p. R1-R16
[63] Jpn. J. Appl. Phys., 28 (1989), pp. 2485-2507
[64] J. Appl. Phys., 79 (1996), pp. 5755-5757
[65] J. Phys. D: Appl. Phys., 34 (2001), pp. 160-166
[66] Magnetic stability of nano-particles: The role of dipolar instability pockets, Europhys. Lett., Volume 54 (2001) no. 6, pp. 813-819
[67] Micromagnetic model of non-collective magnetization reversal in ultrathin magnetic dots with in-plane uniaxial anisotropy, Phys. Rev. B, Volume 63 (2001) no. 17, p. 174418
[68] M. Eleoui, O. Fruchart, J.C. Toussaint, Micromagnetic model of magnetization reversal of magnetically hard ultrathin dots and stripes, J. Magn. Magn. Mater., in press
[69] J. Appl. Phys., 91 (2002), pp. 7625-7627
[70] In preparation
[71] J. Appl. Phys., 87 (2000), pp. 7067-7069
[72] A micromagnetic approach to the constitutive equation of soft-ferromagnetic media, J. Magn. Magn. Mater., Volume 44 (1984) no. 1–2, pp. 207-215
[73] Self-consistent domain theory in soft-ferromagnetic media. II. Basic domain structures in thin-film objects, J. Appl. Phys., Volume 60 (1986), p. 1104
[74] Thin-film magnetic patterns in an external field, Appl. Phys. Lett., Volume 54 (1989), p. 78
[75] Micromagnetic below saturation, J. Appl. Phys., Volume 66 (1989), p. 4329
[76] Two-dimensional modelling of soft ferromagnetic films, Proc. Roy. Soc. London Ser. A, Volume 457 (2001), pp. 2983-2991
[77] Computation of the magnetic domain structure in bulk permalloy, Phys. Rev. B, Volume 60 (1999) no. 10, pp. 7366-7378
[78] Flux-closure-domain states and demagnetizing energy determination in sub-micron size magnetic dots, Europhys. Lett., Volume 63 (2003) no. 1, pp. 135-141
[79] Angular-dependence of magnetization switching for a multi-domain dot: experiment and simulation, Phys. Rev. B, Volume 70 (2004), p. 172409 (brief report)
[80] Field evolution of magnetic vortex state in ferromagnetic disks, Appl. Phys. Lett., Volume 78 (2001) no. 24, p. 3848
[81] Evolution and stability of a magnetic vortex in a small cylindrical ferromagnetic particle under applied field, Phys. Rev. B, Volume 63 (2001), p. 100403(R)
[82] Analytical approach to the single-domain-to-vortex transition in small magnetic disks, Phys. Rev. B, Volume 70 (2004), p. 144402
[83] Virgin domain structures in mesoscopic Co patterns: Comparison between simulation and experiment, J. Appl. Phys., Volume 98 (2005), p. 043901
[84] Nanoscale magnetic domains in mesoscopic magnets, Science, Volume 272 (1996), pp. 1782-1785
[85] Concentric domains in patterned thin films with perpendicular magnetic anisotropy, Europhys. Lett., Volume 64 (2003) no. 6, pp. 810-815
[86] R. Hertel, O. Fruchart, S. Cherifi, P.-O. Jubert, S. Heun, A. Locatelli, J. Kirschner, Three-dimensional magnetic flux-closure patterns in mesoscopic Fe islands, Phys. Rev. B, in press
[87] Lorentz microscopy of circular ferromagnetic permalloy nanodisks, Appl. Phys. Lett., Volume 77 (2000) no. 18, pp. 2909-2911
[88] Evolution of vortex states under external magnetic field, J. Magn. Magn. Mater., Volume 239 (2002), pp. 1-4
[89] Vortex nucleation in submicrometer ferromagnetic disks, Appl. Phys. Lett., Volume 82 (2003) no. 23, pp. 4110-4112
[90] Accurate numerical methods for micromagnetics simulations with general geometries, J. Comput. Phys., Volume 184 (2003), pp. 37-52
[91] Hysteresis of Néel line motion and effective width of 180° Bloch walls in bulk iron, Phys. Rev. B, Volume 33 (1986) no. 7, pp. 4777-4781
[92] Controlled injection of a singular point along a linear magnetic structure, Europhys. J. D, Volume 26 (1994), p. 57
[93] Direct observation of internal spin structure of magnetic vortex cores, Science, Volume 298 (2002), pp. 577-580
[94] MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field, J. Magn. Magn. Mater., Volume 240 (2002), pp. 1-6
[95] Micromagnetic study of Bloch-point-mediated vortex core reversal, Phys. Rev. B, Volume 67 (2003), p. 094410
[96] Appl. Phys. Lett., 65 (1994), pp. 2484-2486
[97] Hexagonally ordered 100 nm period nickel nanowire arrays, Appl. Phys. Lett., Volume 79 (2001), pp. 1360-1362
[98] Appl. Phys. Lett., 82 (2003), pp. 88-90
[99] Nature, 432 (2004), pp. 203-206
[100] A. Thiaville, Y. Nakatani, Spin Dynamics in Confined Magnetic Structures III, Springer, Berlin, in press
[101] IEEE Trans. Magn., 33 (1997), pp. 4167-4169
[102] J. Magn. Magn. Mater., 290–291 (2005), pp. 750-753
[103] Appl. Phys. Lett., 85 (2004), pp. 5637-5639
[104] J. Appl. Phys., 45 (1974), pp. 5406-5421
[105] J. Magn. Magn. Mater., 249 (2002), pp. 181-186
[106] Europhys. Lett., 65 (2004), pp. 526-532
[107] Phys. Rev. Lett., 92 (2004), p. 077205
[108] Phys. Rev. Lett., 94 (2005), p. 106601
[109] Phys. Rev. Lett., 93 (2005), p. 127204
[110] Europhys. Lett., 69 (2005), pp. 990-996
[111] Geometrically constrained magnetic wall, Phys. Rev. Lett., Volume 83 (1999) no. 12, p. 2425
[112] Real-space observation of dipolar antiferromagnetism in magnetic nanowires by spin-polarized scanning tunneling spectroscopy, Phys. Rev. Lett., Volume 84 (2000) no. 22, pp. 5212-5215
[113] Sur un nouveau mode de couplage entre les aimantations de deux couches minces ferromagnétiques, C. R. Acad. Sci., Volume 255 (1962), pp. 1676-1681
[114] Effect of finite magnetic film thickness on Néel coupling in spin valves, J. Appl. Phys., Volume 85 (1999) no. 8, pp. 4466-4468
[115] Orange peel coupling in multilayers with perpendicular magnetic anisotropy: Application to (Co/Pt)-based exchange-biased spin-valves, Europhys. Lett., Volume 65 (2004) no. 1, pp. 123-129
[116] Physics and methods for studying metallic multilayers with interlayer exchange coupling and GMR response, Magnetic Multilayers and Giant Magneto-Resistance – Fundamentals and Industrial Applications, Springer Ser. Surface Sci., vol. 37, Springer, Heidelberg, 2000, pp. 179-262
[117] Theory of interlayer exchange interactions in magnetic multilayers, J. Phys.: Condens. Matter, Volume 11 (1999), pp. 9403-9419
[118] Domain-wall induced coupling between ferromagnetic layers, Phys. Rev. Lett., Volume 84 (2000) no. 8, pp. 1816-1819
[119] Oscillatory decay of magnetization induced by domain-wall stray fields, Phys. Rev. Lett., Volume 84 (2000) no. 15, pp. 3462-3465
[120] Influence of domain wall interactions on nanosecond switching in magnetic tunnel junctions | arXiv
[121] Ordered magnetic nanostructures: fabrication and properties, J. Magn. Magn. Mater., Volume 256 (2003), pp. 449-501
[122] Multipole interaction of polarized single-domain particles, J. Phys.: Condens. Matter, Volume 16 (2005), pp. 9037-9045
[123] Enhanced coercivity in sub-micrometer-sized ultrathin epitaxial dots with in-plane magnetization, Phys. Rev. Lett., Volume 82 (1999) no. 6, pp. 1305-1308
[124] Magnetization reversal in arrays of perpendicularly magnetized ultrathin dots coupled by dipolar interaction, Phys. Rev. Lett., Volume 81 (1998) no. 25, pp. 5656-5659
[125] Magnetization reversal in long chains of submicrometric Co dots, Appl. Phys. Lett., Volume 72 (1998) no. 2, pp. 225-257
[126] Mathematical Models of Hysteresis, Springer-Verlag, New York, 1991
[127] Phys. Status Solidi, 7919 (1964)
[128] The remanence of a Stoner–Wohlfarth particle ensemble as a function of the demagnetisation process, J. Magn. Magn. Mater., Volume 184 (1998), pp. 245-255
[129] Thermally activated switching of nanoparticles: a numerical study, J. Magn. Magn. Mater., Volume 272–276 (2004), p. e1237-e1238
[130] Three-dimensional magnetization reversal measurements in nanoparticles, Phys. Rev. Lett., Volume 83 (1999) no. 20, pp. 4188-4191
[131] Observation of magnetic switching in submicron magnetic-tunnel junctions at low frequency, J. Appl. Phys., Volume 85 (1999) no. 8, p. 5267
[132] Experimental evidence of the Néel–Brown model of magnetization reversal, Phys. Rev. Lett., Volume 78 (1997) no. 9, pp. 1791-1794
[133] Phys. Rev. Lett., 63 (1989), pp. 457-460
[134] J. Magn. Magn. Mater., 182 (1998), pp. 5-18
[135] Intrinsic fluctuations in a superconducting ring closed with a Josephson junction, Phys. Rev. B, Volume 6 (1972), p. 832
[136] Dynamics of the magnetization reversal: from continuous to patterned ferromagnetic films, Spin Dynamics in Confined Magnetic Structures, Springer, Heidelberg, 2001, pp. 127-160
[137] Dynamical properties of magnetization reversal in exchange-coupled NiO/Co bilayers, Phys. Rev. B, Volume 64 (2001), p. 172402
[138] Experimental evidence of a activation law in nanostructures with perpendicular magnetic anisotropy, Phys. Rev. B, Volume 71 (2005), p. 100402
[139] Domain wall creep in an ising ultrathin magnetic film, Phys. Rev. Lett., Volume 80 (1998), pp. 842-849
[140] Thermally activated magnetization reversal in elongated ferromagnetic particles, Phys. Rev. Lett., Volume 71 (1993) no. 21, pp. 3557-3560
[141] Nucleation in ferromagnetic nanowires – magnetostatics and topology, J. Appl. Phys., Volume 85 (1999) no. 8, pp. 6172-6174
[142] On the theory of Debye and Néel relaxation of single domain ferromagnetic particles, Adv. Chem. Phys., Volume 83 (1993), p. 263
[143] Self-organized growth of nanosized vertical magnetic pillars on Au(111), Phys. Rev. Lett., Volume 83 (1999) no. 14, pp. 2769-2772
[144] Magnetism of small Fe clusters on Au(111) studied by X-ray magnetic circular dichroism, Phys. Rev. B, Volume 64 (2001), p. 104429
[145] The remarkable difference between surface and step atoms in the magnetic anisotropy of 2D nanostructures, Nat. Mater., Volume 2 (2003), p. 546
[146] The low field susceptibility of a textured superparamagnetic system, J. Magn. Magn. Mater., Volume 53 (1985), pp. 199-207
[147] Vertical self-organization of epitaxial magnetic nanostructures, J. Magn. Magn. Mater., Volume 239 (2002), pp. 224-227
[148] O. Fruchart, Auto-organisation épitaxiale: des surfaces aux matériaux magnétiques, Habilitation, Institut National Polytechnique de Grenoble, 2003
[149] Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys., Volume 36 (2003), p. R167-R181
[150] Room temperature magnetic quantum cellular automata, Science, Volume 287 (2000), pp. 1466-1468
[151] Surface and volume anisotropy from dipole-dipolar interactions in ultrathin ferromagnetic films, J. Appl. Phys., Volume 64 (1988) no. 7, pp. 3610-3613
[152] Spin and orbital magnetization in self-assembled Co clusters on Au(111), Phys. Rev. B, Volume 59 (1999) no. 2, p. R701-R704
[153] Direct determination of interfacial magnetic moments with a magnetic phase transition in Co nanoclusters on Au(111), Phys. Rev. Lett., Volume 87 (2001), p. 257201
[154] Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films, Phys. Rev. Lett., Volume 88 (2002) no. 4, p. 047202
Cited by Sources:
Comments - Policy