FALCON is a wide-field, multi-object integral field spectrograph equipped with adaptive optics. It is dedicated to the study of the formation process of primordial galaxies. The AO system uses natural guide stars, and the high sky coverage required for these studies is obtained using tomographic techniques for the wavefront analysis. The structure of the OA system is very new, and particularly suited for a future implementation on extremely large telescopes.
FALCON est un spectrographe intégral de champ multi-objet grand champ équipé d'une Optique Adaptative (OA). Ce système est dédié à l'étude de la physique de la formation des galaxies primordiales. Le système d'OA utilise des étoiles naturelles, et la grande couverture de ciel requise pour ce type d'étude est obtenue en utilisant une approche tomographique pour l'analyse de front d'onde. La structure très novatrice de ce système d'OA est particulièrement attractive pour équiper les futurs télescopes extrêmement grands.
Mots-clés : Optique adaptative, Spectroscopie
Eric Gendron 1; François Assémat 1; François Hammer 1; Pascal Jagourel 1; Fanny Chemla 1; Philippe Laporte 1; Mathieu Puech 1; Michel Marteaud 1; Frédéric Zamkotsian 2; Arnaud Liotard 2; Jean-Marc Conan 3; Thierry Fusco 3; Norbert Hubin 4
@article{CRPHYS_2005__6_10_1110_0, author = {Eric Gendron and Fran\c{c}ois Ass\'emat and Fran\c{c}ois Hammer and Pascal Jagourel and Fanny Chemla and Philippe Laporte and Mathieu Puech and Michel Marteaud and Fr\'ed\'eric Zamkotsian and Arnaud Liotard and Jean-Marc Conan and Thierry Fusco and Norbert Hubin}, title = {FALCON: multi-object {AO}}, journal = {Comptes Rendus. Physique}, pages = {1110--1117}, publisher = {Elsevier}, volume = {6}, number = {10}, year = {2005}, doi = {10.1016/j.crhy.2005.10.012}, language = {en}, }
TY - JOUR AU - Eric Gendron AU - François Assémat AU - François Hammer AU - Pascal Jagourel AU - Fanny Chemla AU - Philippe Laporte AU - Mathieu Puech AU - Michel Marteaud AU - Frédéric Zamkotsian AU - Arnaud Liotard AU - Jean-Marc Conan AU - Thierry Fusco AU - Norbert Hubin TI - FALCON: multi-object AO JO - Comptes Rendus. Physique PY - 2005 SP - 1110 EP - 1117 VL - 6 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2005.10.012 LA - en ID - CRPHYS_2005__6_10_1110_0 ER -
%0 Journal Article %A Eric Gendron %A François Assémat %A François Hammer %A Pascal Jagourel %A Fanny Chemla %A Philippe Laporte %A Mathieu Puech %A Michel Marteaud %A Frédéric Zamkotsian %A Arnaud Liotard %A Jean-Marc Conan %A Thierry Fusco %A Norbert Hubin %T FALCON: multi-object AO %J Comptes Rendus. Physique %D 2005 %P 1110-1117 %V 6 %N 10 %I Elsevier %R 10.1016/j.crhy.2005.10.012 %G en %F CRPHYS_2005__6_10_1110_0
Eric Gendron; François Assémat; François Hammer; Pascal Jagourel; Fanny Chemla; Philippe Laporte; Mathieu Puech; Michel Marteaud; Frédéric Zamkotsian; Arnaud Liotard; Jean-Marc Conan; Thierry Fusco; Norbert Hubin. FALCON: multi-object AO. Comptes Rendus. Physique, Multi-Conjugate Adaptive Optics for very large telescopes, Volume 6 (2005) no. 10, pp. 1110-1117. doi : 10.1016/j.crhy.2005.10.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.10.012/
[1] Hα velocity fields and rotation curves of galaxies in clusters III. Nine galaxies in DC 1842-63, Astron. Astrophys. S, Volume 113 (1995), p. 35
[2] A counts-in-cells analysis of Lyman-break galaxies at redshift , Astrophys. J., Volume 505 (1998), p. 18
[3] et al. Ultradeep near-infrared ISAAC observations of the Hubble Deep Field South: observations, reduction, multicolor catalog, and photometric redshifts, Astrophys. J., Volume 587 (2003), p. 83
[4] Infrared observations of nebular emission lines from galaxies at , Astrophys. J., Volume 508 (1998), p. 539
[5] Anisoplanatism in adaptive optics, J. Opt. Soc. Am. A, Volume 72 (1982), p. 52
[6] Phase-contrast detection of telescope seeing errors and their correction, Astrophys. J., Volume 198 (1975), p. 605
[7] Increasing the size of the isoplanatic patch with multiconjugate adaptive optics (M.H. Ulrich, ed.), ESO Conf. on Very Large Telescopes and their Instrumentation, ESO Conference and Workshop Proceedings, vol. 2, 1989, p. 693
[8] Phase estimation for large field of view: application to multiconjugate adaptive optics (M.C. Roggemann; L.R. Bissonnette, eds.), Propagation and Imaging through the Atmosphere III, Proc. SPIE, vol. 3763, 1999, p. 125
[9] Multi-conjugate adaptive optics with laser guide stars: performance in the infrared and visible, Mon. Not. R. Astron. Soc., Volume 334 (2002) no. 865, p. 22
[10] Modal tomography for adaptive optics, Astron. Astrophys., Volume 342 (1999), p. L53
[11] Optimized modal tomography in adaptive optics, Astron. Astrophys., Volume 378 (2001), p. 710
[12] Limiting precision of tomographic phase estimation, J. Opt. Soc. Am. A, Volume 18 (2001), p. 873
[13] et al. MAD status report, Advancements in Adaptive Optics, Proc. SPIE, vol. 5490, 2004, p. 236
[14] Multiconjugate adaptive optics for Gemini-South (P.L. Wizinowich; D. Bonaccini, eds.), Adaptive Optical System Technologies II, Proc. SPIE, vol. 4839, 2003, p. 55
[15] Feasibility of adaptive telescope with laser probe, Astron. Astrophys., Volume 152 (1985), p. L29
[16] Laser Guide Star for 3.6- and 8-m telescopes: performance and astrophysical implications, Mon. Not. R. Astron. Soc., Volume 295 (1998), p. 756
[17] Adaptive telescope with laser probe – isoplanatism and cone effect, Astron. Astrophys., Volume 235 (1990), p. 549
[18] N. Hubin, et al., Ground Layer Adaptive Optics, C. R. Physique 6 (2005), in this issue
[19] M. Puech, F. Chemla, P. Laporte, et al., Deformable mirrors for the FALCON concept, Astronomical Adaptive Optics Systems and Applications II, Proc. SPIE, vol. 5903, 2005, in press
[20] Optimization-based operation of micromachined deformable mirrors, Adaptive Optical System Technologies, Proc. SPIE, vol. 3353, 1998, p. 902
[21] A. Liotard, F. Zamkotsian, Static and dynamic micro-deformable mirror characterization by phase-shifting and time averaged interferometry, International Conference on Space Optics (ICSO) 2004, Toulouse, France, March 2004
[22] et al. Adaptive Optical Systems Technology, Proc. SPIE, vol. 4007, 2000, p. 185
[23] Specialized Optical Developments in Astronomy (Atad-Ettedgui; D'Odorico, eds.), Proc. SPIE, vol. 4842, 2003, pp. 207-218
[24] F. Zamkotsian, V. Conedera, A. Liotard, A. Schroeder, N. Fabre, P. Lanzoni, H. Camon, Polymer-based microdeformable mirror for adaptive optics, in: SPIE Conference MOEMS 2005, San Jose, USA, January 2005, Proc. SPIE, vol. 5719
[25] Diffraction limited image restoration by post-compensation from simultaneous speckle and wavefront sensing observations (P.L. Wizinowich; D. Bonaccini, eds.), Adaptive Optical System Technologies II, Proc. SPIE, vol. 4839, 2003, pp. 1142-1153
[26] Improvements on the optical differentiation wavefront sensor, Mon. Not. R. Astron. Soc., Volume 360 (2005), p. 1448
[27] et al. FALCON: a new generation spectrograph with adaptive optics for the ESO VLT, Optics in Atmospheric Propagation and Adaptive Systems VI, Proc. SPIE, vol. 5237, 2003, p. 221
[28] Optical resolution through a randomly inhomogeneous medium for very long and very short exposures, J. Opt. Soc. Am., Volume 56 (1966), p. 1372
[29] Optical parameter relevant for high angular resolution at Paranal from GSM instrument and surface layer contribution, Astron. Astrophys. Suppl. Ser., Volume 144 (2000), pp. 39-44
[30] Zernike polynomials and atmospheric turbulence, J. Opt. Soc. Am. A, Volume 66 (1976), p. 207
[31] Laser guide star in adaptive optics – the tilt determination problem, Astron. Astrophys., Volume 261 (1992), p. 677
[32] et al. NAOS, the first AO system of the VLT: on-sky performance (P.L. Wizinowich; D. Bonaccini, eds.), Adaptive Optical System Technologies II, Proc. SPIE, vol. 4839, 2003, pp. 140-149
Cited by Sources:
Comments - Policy