The circulation around any closed loop is a Lagrangian invariant for classical, smooth solutions of the incompressible Euler equations in any number of space dimensions. However, singular solutions relevant to turbulent flows need not preserve the classical integrals of motion. Here we generalize the Kelvin theorem on conservation of circulations to distributional solutions of Euler and give necessary conditions for the anomalous dissipation of circulations. We discuss the important role of Kelvin's theorem in turbulent vortex-stretching dynamics and conjecture a version of the theorem which may apply to suitable singular solutions.
La circulation autour d'une boucle fermée est un invariant de Lagrange pour des solutions classiques des équations d'Euler incompressibles dans un espace à dimension quelconque. Cependant, les solutions singulières qui s'appliquent à des écoulements turbulents ne conservent pas forcément les constantes du mouvement classiques. Dans cette contribution, nous généralisons le théorème de Kelvin sur la conservation des circulations aux solutions singulières d'Euler et donnons les conditions nécessaires pour la dissipation anormale des circulations. Nous discutons le rôle important du théorème de Kelvin dans la dynamique turbulente qui déforme les tourbillons, et proposons une version du théorème qui pourrait s'appliquer aux solutions singulières.
Mots-clés : Turbulence, Circulation, Équations d'Euler, Théorème de Kelvin
Gregory L. Eyink 1, 2
@article{CRPHYS_2006__7_3-4_449_0, author = {Gregory L. Eyink}, title = {Turbulent cascade of circulations}, journal = {Comptes Rendus. Physique}, pages = {449--455}, publisher = {Elsevier}, volume = {7}, number = {3-4}, year = {2006}, doi = {10.1016/j.crhy.2006.01.008}, language = {en}, }
Gregory L. Eyink. Turbulent cascade of circulations. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 449-455. doi : 10.1016/j.crhy.2006.01.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.008/
[1] Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen, Crelles Journal, Volume 55 (1858), pp. 25-55
[2] On vortex motion, Trans. Roy. Soc. Edin., Volume 25 (1869), pp. 217-260
[3] Statistical hydrodynamics, Nuovo Cimento, Volume 6 (1949), pp. 279-287
[4] Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer, Physica D, Volume 78 (1994), pp. 222-240
[5] Onsager's conjecture on the energy conservation for solutions of the Euler's equations, Commun. Math. Phys., Volume 165 (1994), pp. 207-209
[6] Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations, Nonlinearity, Volume 13 (2000), pp. 249-255
[7] Production and dissipation of vorticity in a turbulent fluid, Proc. R. Soc. London Ser. A, Volume 164 (1938), pp. 15-23
[8] Vortex Dynamics, Cambridge Univ. Press, Cambridge, UK, 1992
[9] Hamiltonian fluid mechanics, Annu. Rev. Fluid Mech., Volume 20 (1988), pp. 225-256
[10] Euler–Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., Volume 349 (1998), pp. 4173-4177
[11] The Navier–Stokes–alpha model of fluid turbulence, Physica D, Volume 152–153 (2001), pp. 505-519
[12] Sur les movements d'un fluide visqueux remplaissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248
[13] Near identity transformations for the Navier–Stokes equations, Handbook of Mathematical Fluid Dynamics, vol. II, North-Holland, Amsterdam, 2003 (117–141)
[14] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547
[15] Theory of Function Spaces, Birkhauser, Basel, 1983
[16] Dissipation in turbulent solutions of 2D Euler equations, Nonlinearity, Volume 14 (2000), pp. 787-802
[17] The fractal facets of turbulence, J. Fluid Mech., Volume 173 (1986), pp. 357-386
[18] An inequality of the Hölder type connected with Stieltjes integration, Acta Math., Volume 67 (1936), pp. 251-282
[19] Integration with respect to fractal functions and stochastic calculus. I, Prob. Theory Rel. Fields, Volume 111 (1998), pp. 333-374
[20] Slow modes in passive advection, J. Stat. Phys., Volume 90 (1998), pp. 519-569
[21] Atmospheric diffusion shown on a distance-neighbor graph, Proc. R. Soc. London Ser. A, Volume 110 (1926), pp. 709-737
[22] Integration of Brownian vector fields, Ann. Prob., Volume 30 (2002), pp. 826-873
[23] Flows, coalescence, and noise, Ann. Prob., Volume 32 (2004), pp. 1247-1315
[24] Lagrangian dispersion in Gaussian self-similar velocity ensembles, J. Stat. Phys., Volume 113 (2003), pp. 643-692
[25] The least action principle and the related concept of generalized flows for incompressible inviscid fluids, J. Amer. Math. Soc., Volume 2 (1989), pp. 225-255
Cited by Sources:
Comments - Policy