Comptes Rendus
Reconciliation of statistical mechanics and astro-physical statistics: The errors of conventional canonical thermostatistics
Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 311-317.

Conventional thermo-statistics address infinite homogeneous systems within the canonical ensemble. (Only in this case, this is equivalent to the fundamental microcanonical ensemble.) However, some 170 years ago the original motivation of thermodynamics was the description of steam engines, i.e., boiling water. Its essential physics is the separation of the gas phase from the liquid. Of course, boiling water is inhomogeneous and as such cannot be treated by conventional thermo-statistics. Then it is not astonishing that a phase transition of first order is signaled canonically by a Yang–Lee singularity. Thus it is only treated correctly by microcanonical Boltzmann–Planck statistics. It turns out that the Boltzmann–Planck statistics are much richer and give fundamental insight into statistical mechanics and especially into entropy. This can be done to a far extend rigorously and analytically. As no extensivity, no thermodynamic limit, no concavity, no homogeneity is needed, it also applies to astro-physical systems. The deep and essential difference between ‘extensive’ and ‘intensive’ control parameters, i.e., microcanonical and canonical statistics, is exemplified by rotating, self-gravitating systems. In the present article, the necessary appearance of a convex entropy S(E) and negative heat capacity at phase separation in small as well macroscopic systems independently of the range of the force is pointed out. Thus the old puzzle of stellar statistics is finally solved, the appearance of negative heat capacity which is forbidden and cannot appear in the canonical formalism.

La thermo-statistique conventionnelle considère des systèmes homogènes et infinis dans le cadre des ensembles canoniques. (Seulement dans ce cas, ceci est équivalent à l'ensemble fondamental micro-canonique.) Cependant, il y a environ 170 ans, la motivation première de la thermodynamique était la description des machines à vapeur, i.e., de l'eau bouillante. La physique essentielle en est la séparation des phases gazeuse et liquide. Bien sûr, l'eau bouillante est inhomogène, et par là ne peut pas être traitée par la thermo-statistique conventionnelle. Donc ce n'est pas surprenant qu'une transition de phase de premier ordre se caractérise en canonique par une singularité de Yang–Lee. Elle est traitée correctement uniquement par la statistique microcanonique de Boltzmann–Planck. Il s'avère que la statistique de Boltzmann–Planck est bien plus riche et apporte une vision plus fondamentale en mécanique statistique, et particulièrement sur l'entropie. Ceci peut être fait dans une large mesure rigoureusement et analytiquement. Comme n'est requis ni extensivité, ni limite thermodynamique, ni concavité, ni homogénéité, cela s'applique aussi aux systèmes astrophysiques. La différence profonde et essentielle entre les paramètres de contrôle « extensifs » et « intensifs », i.e., entre statistique microcanonique et canonique, est illustrée par les systèmes en rotation, self-gravitants. Dans le présent article, je montre qu'il est nécessaire de considérer une entropie convexe S(E) et une capacité calorifique négative à la séparation de phase, dans les petits systèmes, aussi bien que les systèmes macroscopiques, independemment du domaine de la force. Ainsi l'ancien puzzle des systèmes statistiques stellaires est finalement résolu, comme l'existence d'une capacité calorifique négative, qui est interdite dans le formalisme canonique.

Published online:
DOI: 10.1016/j.crhy.2006.01.009
Keywords: Microcanonical statistics, First order transitions, Phase separation, Steam engines, Negative heat capacity, Self-gravitating and rotating stellar systems
Mots-clés : Statistiques micro-canoniques, Transition du premier ordre, Séparation de phases, Machines à vapeur, Capacité calorifique négative, Systèmes en rotation, Self-gravitants

Dieter H.E. Gross 1, 2

1 Hahn-Meitner-Institut Berlin GmbH, Glienicker Straße 100, 14109 Berlin, Germany
2 Fachbereich Physik der Freien Universität, Arnimallee 14, 14195 Berlin, Germany
@article{CRPHYS_2006__7_3-4_311_0,
     author = {Dieter H.E. Gross},
     title = {Reconciliation of statistical mechanics and astro-physical statistics: {The} errors of conventional canonical thermostatistics},
     journal = {Comptes Rendus. Physique},
     pages = {311--317},
     publisher = {Elsevier},
     volume = {7},
     number = {3-4},
     year = {2006},
     doi = {10.1016/j.crhy.2006.01.009},
     language = {en},
}
TY  - JOUR
AU  - Dieter H.E. Gross
TI  - Reconciliation of statistical mechanics and astro-physical statistics: The errors of conventional canonical thermostatistics
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 311
EP  - 317
VL  - 7
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.01.009
LA  - en
ID  - CRPHYS_2006__7_3-4_311_0
ER  - 
%0 Journal Article
%A Dieter H.E. Gross
%T Reconciliation of statistical mechanics and astro-physical statistics: The errors of conventional canonical thermostatistics
%J Comptes Rendus. Physique
%D 2006
%P 311-317
%V 7
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2006.01.009
%G en
%F CRPHYS_2006__7_3-4_311_0
Dieter H.E. Gross. Reconciliation of statistical mechanics and astro-physical statistics: The errors of conventional canonical thermostatistics. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 311-317. doi : 10.1016/j.crhy.2006.01.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.009/

[1] D.H.E. Gross Negative heat-capacity at phase-separations in microcanonical thermostatistics of macroscopic systems with either short or long-range interactions | arXiv

[2] L. Boltzmann Über die Beziehung eines algemeinen mechanischen Satzes zum Hauptsatz der Wärmelehre, Sitzungsbericht der Akadamie der Wissenschaften, Wien, Volume II (1877), pp. 67-73

[3] E. Schrödinger Statistical Thermodynamics, Cambridge Univ. Press, London, 1946 (a course of seminar lectures, delivered in January–March 1944 at the School of Theoretical Physics)

[4] D.H.E. Gross; J.F. Kenney The microcanonical thermodynamics of finite systems: The microscopic origin of condensation and phase separations; and the conditions for heat flow from lower to higher temperatures, J. Chem. Phys., Volume 122 (2005), p. 224111 | arXiv

[5] J.E. Kilpatrick Classical thermostatistics (H. Eyring, ed.), Statistical Mechanics, vol. II, Academic Press, New York, 1967, pp. 1-52 (Chapter 1)

[6] D.H.E. Gross Ensemble probabilistic equilibrium and non-equilibrium thermodynamics without the thermodynamic limit, Boston, October 2001 (E. Khrennikov, ed.) (PQ–QP: Quantum Probability, White Noise Analysis), Volume vol. XIII, ACM, World Scientific (2001), pp. 131-146

[7] D.H.E. Gross A new thermodynamics from nuclei to stars, Entropy, Volume 6 (2004), pp. 158-179 | arXiv

[8] P. Glansdorff; I. Prigogine Thermodynamic Theory of Structure, Stability and Fluctuations, John Wiley & Sons, London, 1971

[9] D.H.E. Gross Microcanonical Thermodynamics: Phase Transitions in “Small” Systems, Lecture Notes in Physics, vol. 66, World Scientific, Singapore, 2001

[10] R.D. Carlitz Hadronic matter at high density, Phys. Rev. D, Volume 5 (1972), pp. 3231-3242

[11] T. Padmanabhan Statistical mechanics of gravitating systems in static and cosmological backgrounds | arXiv

[12] E.V. Votyakov; A. De Martino; D.H.E. Gross Thermodynamics of rotating self-gravitating systems, Eur. Phys. J. B, Volume 29 (2002), p. 593 | arXiv

[13] D.H.E. Gross Classical equilibrium thermostatistics, “Sancta Sanctorum of Statistical Mechanics”, from Nuclei to Stars, Physica A, Volume 340 (2004) no. 1–3, pp. 76-84 | arXiv

[14] C. Tsallis What should a statistical mechanics satisfy to reflect nature? | arXiv

[15] P.H. Chavanis; M. Rieutord Statistical mechanics and phase diagrams of rotating self-gravitating fermions, Astron. Astrophys., Volume 412 (2003), p. 1 | arXiv

[16] E.V. Votyakov; H.I. Hidmi; A. De Martino; D.H.E. Gross Microcanonical mean-field thermodynamics of self-gravitating and rotating systems, Phys. Rev. Lett., Volume 89 (2002), p. 031101 | arXiv

Cited by Sources:

Comments - Policy