[Nouveaux cristaux laser pour la génération d'impulsions ultra-brèves]
Le saphir dopé au titane est devenu le cristal de référence pour le développement de systèmes laser produisant des impulsions ultra-brèves et de forte puissance crête, grâce notamment à la technique d'amplification à dérive de fréquence. Ce cristal est donc à la base des lasers femtoseconde commerciaux actuels. Cependant, de nouveaux cristaux de laser ont été étudiés, d'une part, pour avoir accès directement à d'autres gammes de longueurs d'onde et, d'autre part, pour permettre le pompage direct par diodes laser de puissance et ainsi être beaucoup plus efficace qu'avec les lasers verts utilisés pour pomper le saphir dopé au titane. Pour cela, de nouveaux cristaux dopés au chrome ou à l'ytterbium ont été développés. Cet article se propose de faire un état de l'art des derniers développements dans ces domaines de recherche en mettant en avant les meilleures performances obtenues en termes de durée d'impulsion.
Since the beginning of the 1990s, titanium sapphire has become the crystal of choice for the development of ultrashort laser systems producing very short and powerful pulses using the Chirped Pulse Amplification technique. In parallel to these developments leading to commercial products, new laser crystals have been studied in order to reach directly other wavelength ranges and to overcome the need to develop cw or pulsed green laser to pump the titanium sapphire crystal. In order to be able to directly pump the crystals with a very efficient and high-power semiconductor laser, new crystals doped with chromium or ytterbium ions have been developed. This article will review the latest development in this research field with the best performances obtained in terms of pulse duration.
Mot clés : Laser, Impulsions femtoseconde, Cristaux laser, Pompage par diode laser
Frédéric Druon 1 ; François Balembois 1 ; Patrick Georges 1
@article{CRPHYS_2007__8_2_153_0, author = {Fr\'ed\'eric Druon and Fran\c{c}ois Balembois and Patrick Georges}, title = {New laser crystals for the generation of ultrashort pulses}, journal = {Comptes Rendus. Physique}, pages = {153--164}, publisher = {Elsevier}, volume = {8}, number = {2}, year = {2007}, doi = {10.1016/j.crhy.2006.04.004}, language = {en}, }
Frédéric Druon; François Balembois; Patrick Georges. New laser crystals for the generation of ultrashort pulses. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 153-164. doi : 10.1016/j.crhy.2006.04.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.04.004/
[1] Locking of He–Ne laser mode induced by synchronous intracavity modulation, Appl. Phys. Lett., Volume 5 (1964), p. 4
[2] Small-signal analysis of internal (coupling type) modulation of lasers, J. Appl. Phys., Volume 35 (1964), p. 2870
[3] Mode locked ruby laser, Appl. Phys. Lett., Volume 7 (1965), pp. 270-273
[4] Mode locked Nd glass, Appl. Phys. Lett., Volume 8 (1966), pp. 174-176
[5] First CPM, Appl. Phys. Lett., Volume 38 (1981), pp. 671-672
[6] Prism CPM, IEEE J. Quant. Electron., Volume 22 (1986), pp. 112-118
[7] Spectroscopic and laser characteristics of TiAl2O3, J. Opt. Soc. Am. B, Volume 3 (1986), pp. 125-133
[8] 60-fs pulse generation from a self-mode-locked Ti–sapphire laser, Opt. Lett., Volume 16 (1991), pp. 42-44
[9] Femtosecond solid-state lasers, IEEE J. Quant. Electron., Volume 28 (1992), pp. 2097-2121
[10] Compression of amplified chirped optical pulses, Opt. Commun., Volume 55 (1985), pp. 447-449
[11] Generation of ultrahigh peak power pulses by chirped pulse amplification, IEEE J. Quant. Electron. (1988), pp. 398-403
[12] Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12.Y3Al5O12, Y3Ga5012, J. Lum., Volume 68 (1996), pp. 1-14
[13] The behavior of chromium ions in forsterite, J. Cryst. Growth (1993), pp. 128-996
[14] Near infrared emission of Cr4+ doped garnets: lifetimes, quantum efficiencies and emission cross sections, Phys. Rev. B, Volume 51 (1995), pp. 17323-17331
[15] Spectroscopy and dynamics of Cr4+:Y3Al5O12, Phys. Rev. B, Volume 49 (1994), pp. 15505-15513
[16] Spectroscopy of C3+ and Cr3+ ions in forsterite, Phys. Rev. B, Volume 43 (1991), p. 5234
[17] GLX-200 from Time Bandwidth Products (http://www.tbwp.com/) which is a femtosecond Nd:glass laser system, <250 fs, >400 mW at 1058 nm
[18] IC-100 fs > 100 mW at 1.06 μm from High Q Lasers (http://www.highqlaser.com/) which is a femtosecond Nd:glass laser ultracompact mode-locked laser
[19] Investigation of the laser properties of Cr3+:LiSrGaF6, IEEE J. Quant. Electron., Volume 28 (1992), pp. 2612-2618
[20] LiCaAlF6:Cr3+: a promising new solid-state laser material, IEEE J. Quant. Electron., Volume 24 (1988), pp. 2243-2252
[21] Thermo-mechanical and thermo-optical properties of the LiCaAlF6:Cr3+ laser material, J. Opt. Soc. Am. B, Volume 8 (1991), pp. 970-977
[22] Theoretical and experimental investigations of small-signal gain for diode-pumped Q-switched Cr:LiSAF laser, IEEE J. Quant. Electron., Volume 33 (1997), p. 2
[23] S. Kuck, K.L. Schepler, Excited state absorption and stimulated emission measurements of Cr4+ doped Y3Al5O12, Y3Sc0.9Al4.1O12 and CaY2Mg2Ge2O12, in: Advanced Solid State Laser, OSA TOPS, 1996, pp. 94–99
[24] Ytterbium solid-state lasers—the first decade, IEEE J. Selected Topics Quant. Electron., Volume 6 (2000), pp. 1287-1296
[25] Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications, IEEE J. Quant. Electron., Volume 29 (1984), pp. 1179-1191
[26] Efficient, tunable, zero-line diode-pumped, continuous-wave Yb3+:Ca4LnO(BO3)3 (Ln = Gd, Y) lasers at room temperature and application to miniature lasers, J. Opt. Soc. Am. B, Volume 17 (2000) no. 1
[27] Diode-pumped Yb:GGG laser: comparison with Yb:YAG, Opt. Mat., Volume 22 (2003), pp. 99-106
[28] CW laser performance of Yb and Er, Yb doped tungstates, Appl. Phys. B, Volume 64 (1997), p. 409
[29] Determination of laser parameters of ytterbium-doped oxide crystalline materials, J. Opt. Soc. Am. B, Volume 19 (2002), pp. 2365-2375
[30] Spectroscopy and efficient laser action from diode pumping of a new broadly tunable crystal: Yb3+:Sr3Y(BO3)3, J. Opt. Soc. Am. B, Volume 19 (2002), pp. 1083-1091
[31] Spectroscopic and crystal-field of new Yb-doped laser materials, J. Phys. Condens. Matter, Volume 13 (2001), p. 5427
[32] Czochralski growth of six Yb-doped double borate and silicate laser materials, J. Crystal Growth (2001), p. 233
[33] Determination of laser parameters of ytterbium-doped oxide crystalline materials, J. Opt. Soc. Am. B, Volume 19 (2002), pp. 2365-2375
[34] Thermal conductivity of garnets and phonon scattering by rare-earth ions, Phys. Rev. B, Volume 4 (1971), pp. 592-609
[35] Heat generation in Nd:YAG and Yb:YAG, IEEE J. Quant. Electron., Volume 29 (1993), pp. 1457-1459
[36] Optimizing the efficiency and stored energy in quasi-three-level lasers, IEEE J. Quant. Electron., Volume 28 (1992), pp. 2692-2697
[37] Theoretical and experimental investigations of a diode-pumped quasi-three-level laser: the Yb3+-doped Ca4GdO(BO3)3 (Yb:GdCOB) laser, IEEE J. Quant. Electron., Volume 36 (2000), pp. 598-606
[38] Q-switching stability limits of continuous-wave passive mode locking, J. Opt. Soc. Am. B, Volume 16 (1999), p. 46
[39] Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers, IEEE J. Quant. Electron., Volume 33 (1997), pp. 609-617
[40] Efficient broadly tunable continuous-wave Cr2+:ZnSe laser, JOSA B, Volume 18 (2001), p. 926
[41] Continuous-wave broadly tunable Cr2+:ZnSe laser, Opt. Lett., Volume 24 (1999), p. 19
[42] Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media, IEEE J. Quant. Electron., Volume 32 (1996), pp. 885-895
[43] Femtosecond pulse generation from a SESAM mode locked Cr:ZnSe laser, Conference on Laser and Electro Optic, The Optical Society of America, 2006 (paper CMQ2)
[44] Mira 900 F from Coherent (http://www.coherentinc.com) delivering pulses <150 fs with a tunability from 700 to 980 nm
[45] Tsunami from Spectra Physics (http://www.splasers.com) with similar performance than Mira 900 F from Coherent
[46] Chameleon from Coherent (http://www.coherentinc.com) delivering pulses <150 fs with a tunability from 720 and 930 nm
[47] Mai Tai from Spectra Physics (http://www.splasers.com) delivering pulses <100 fs with a tunability from 710 and 920 nm
[48] sub-12-fs femtosource from Femtolasers (http://www.femtolasers.com)
[49] sub-35 fs Tsunami from Spectra Physics (http://www.splasers.com)
[50] GLX-200 from Time Bandwidth Products (http://www.tbwp.com/) which is a femtosecond Nd:glass laser system, <250 fs, >400 mW at 1058 nm
[51] IC-100 fs > 100 mW at 1.06 μm from High Q Lasers (http://www.highqlaser.com/) which is a femtosecond Nd:glass laser ultracompact mode-locked laser
[52] IC-10xx-xx fs ytterbium from High Q Lasers (http://www.highqlaser.com/) which is a femtosecond Yb:glass compact sub-200(400)-fs mode-locked with a tunability of 1030–1054 nm
[53] 47-fs diode-pumped Yb3+:CaGdAlO4 laser, Opt. Lett., Volume 31 (2006), pp. 119-121
[54] Generation of sub-40 fs pulses from a mode-locked dual-gain-media Nd:glass laser, Appl. Phys. B, Volume 74 (2002), pp. 177-179
[55] Practical all-fiber source of high-power, 120-fs pulses at 1 μm, Opt. Lett., Volume 28 (2003), pp. 1362-1364
[56] Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser, Opt. Lett., Volume 28 (2003), p. 660
[57] High-power femtosecond Yb-doped fiber amplifier, Opt. Express, Volume 10 (2002), p. 628
[58] Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control, Opt. Express, Volume 10 (2002), p. 1497 http://www.opticsexpress.org
[59] High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Express, Volume 11 (2003), p. 818
[60] 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett., Volume 16 (1991), p. 42
[61] Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime, Opt. Lett., Volume 24 (1999), p. 631
[62] Self-mode-locked Cr:forsterite laser, Opt. Lett., Volume 18 (1993), p. 1168
[63] All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 m, Opt. Lett., Volume 26 (2001), pp. 292-294
[64] Generation of 20-fs pulses by a prismless Cr4+:YAG laser, Opt. Lett., Volume 27 (2002), p. 61
[65] Passive mode locking and dispersion measurement of a sub-100-fs Cr4+:YAG laser, Opt. Lett., Volume 19 (1994), p. 1468
[66] 60-fs pulses from a diode-pumped Nd:glass laser, Opt. Lett., Volume 22 (1997), p. 307
[67] Femtosecond pulses from an all-solid-state Kerr-lens mode-locked Cr:LiSAF laser, Opt. Lett., Volume 19 (1994), p. 1210
[68] Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser, Opt. Lett., Volume 24 (1999), p. 780
[69] Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr3+:LiCAF laser oscillator by use of third-order dispersion-compensating double-chirped mirrors, Opt. Lett., Volume 27 (2002), p. 1726
[70] 14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift, Opt. Lett., Volume 22 (1997), p. 1716
[71] Ultrafast ytterbium-doped bulk laser amplifiers, Appl. Phys. B, Volume 69 (1999), p. 3
[72] 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser, Opt. Lett., Volume 28 (2003), p. 367
[73] Efficient and tunable diode-pumped femtosecond Yb:glass lasers, Opt. Lett. (1998), pp. 126-128
[74] Generation of 90-fs pulses from a mode-locked diode-pumped Yb3+:Ca4GdO(BO3)3 laser, Opt. Lett., Volume 25 (2000), p. 423
[75] Diode-pumped Yb:Sr3Y(BO3)3 femtosecond laser, Opt. Lett., Volume 27 (2002), p. 197
[76] Diode-pumped femtosecond Yb:KGW laser with 1.1-W average power, Opt. Lett., Volume 25 (2000), p. 1119
[77] 240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser, Opt. Lett., Volume 27 (2002), p. 1162
[78] Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser, Opt. Lett., Volume 26 (2001), p. 1723
[79] Passively mode-locked Yb:KYW laser pumped by a tapered diode laser, Opt. Express, Volume 10 (2002), pp. 108-113
[80] Ultra-short-pulsed and highly-efficient diode-pumped Yb:SYS mode-locked oscillators, Opt. Express, Volume 12 (2004), pp. 5005-5012
[81] Apatite-structure crystal, Yb3+:SrY4(SiO4)3O, for the development of diode-pumped femtosecond lasers, Opt. Lett., Volume 27 (2002), pp. 1914-1916
[82] Diode-pumped continuous-wave and femtosecond laser operations of a heterocomposite crystal Yb3+:SrY4(SiO4)3O||Y2Al5O12, Opt. Lett., Volume 30 (2005), pp. 857-859
[83] Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers, Opt. Lett., Volume 30 (2005), pp. 3234-3236
[84] Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser, Opt. Lett., Volume 30 (2005), pp. 1150-1152
[85] High-power diode-pumped Yb3+:CaF2 femtosecond laser, Opt. Lett., Volume 29 (2004), pp. 2767-2769
[86] 47-fs diode-pumped Yb3+:CaGdAlO4 laser, Opt. Lett., Volume 31 (2006), pp. 119-121
[87] Femtosecond pulse generation from a SESAM mode locked Cr:ZnSe laser, Conference on Laser and Electro Optic, The Optical Society of America, 2006 (paper CMQ2)
[88] A SESAM passively mode-locked Cr:ZnS laser, Advanced Solid-State Photonics 2006 Technical Digest, The Optical Society of America, Washington, DC, 2006 (TuA4)
Cité par Sources :
Commentaires - Politique