Comptes Rendus
New laser crystals for the generation of ultrashort pulses
[Nouveaux cristaux laser pour la génération d'impulsions ultra-brèves]
Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 153-164.

Le saphir dopé au titane est devenu le cristal de référence pour le développement de systèmes laser produisant des impulsions ultra-brèves et de forte puissance crête, grâce notamment à la technique d'amplification à dérive de fréquence. Ce cristal est donc à la base des lasers femtoseconde commerciaux actuels. Cependant, de nouveaux cristaux de laser ont été étudiés, d'une part, pour avoir accès directement à d'autres gammes de longueurs d'onde et, d'autre part, pour permettre le pompage direct par diodes laser de puissance et ainsi être beaucoup plus efficace qu'avec les lasers verts utilisés pour pomper le saphir dopé au titane. Pour cela, de nouveaux cristaux dopés au chrome ou à l'ytterbium ont été développés. Cet article se propose de faire un état de l'art des derniers développements dans ces domaines de recherche en mettant en avant les meilleures performances obtenues en termes de durée d'impulsion.

Since the beginning of the 1990s, titanium sapphire has become the crystal of choice for the development of ultrashort laser systems producing very short and powerful pulses using the Chirped Pulse Amplification technique. In parallel to these developments leading to commercial products, new laser crystals have been studied in order to reach directly other wavelength ranges and to overcome the need to develop cw or pulsed green laser to pump the titanium sapphire crystal. In order to be able to directly pump the crystals with a very efficient and high-power semiconductor laser, new crystals doped with chromium or ytterbium ions have been developed. This article will review the latest development in this research field with the best performances obtained in terms of pulse duration.

Publié le :
DOI : 10.1016/j.crhy.2006.04.004
Keywords: Laser, Femtosecond pulses, Laser crystals, Diode-pumping
Mot clés : Laser, Impulsions femtoseconde, Cristaux laser, Pompage par diode laser

Frédéric Druon 1 ; François Balembois 1 ; Patrick Georges 1

1 Laboratoire Charles-Fabry de l'institut d'optique, UMR 8051 du CNRS, centre universitaire d'Orsay, bâtiment 503, 91403 Orsay cedex, France
@article{CRPHYS_2007__8_2_153_0,
     author = {Fr\'ed\'eric Druon and Fran\c{c}ois Balembois and Patrick Georges},
     title = {New laser crystals for the generation of ultrashort pulses},
     journal = {Comptes Rendus. Physique},
     pages = {153--164},
     publisher = {Elsevier},
     volume = {8},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crhy.2006.04.004},
     language = {en},
}
TY  - JOUR
AU  - Frédéric Druon
AU  - François Balembois
AU  - Patrick Georges
TI  - New laser crystals for the generation of ultrashort pulses
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 153
EP  - 164
VL  - 8
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.04.004
LA  - en
ID  - CRPHYS_2007__8_2_153_0
ER  - 
%0 Journal Article
%A Frédéric Druon
%A François Balembois
%A Patrick Georges
%T New laser crystals for the generation of ultrashort pulses
%J Comptes Rendus. Physique
%D 2007
%P 153-164
%V 8
%N 2
%I Elsevier
%R 10.1016/j.crhy.2006.04.004
%G en
%F CRPHYS_2007__8_2_153_0
Frédéric Druon; François Balembois; Patrick Georges. New laser crystals for the generation of ultrashort pulses. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 153-164. doi : 10.1016/j.crhy.2006.04.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.04.004/

[1] L.E. Hargrove; R.L. Fork; M.A. Pollack Locking of He–Ne laser mode induced by synchronous intracavity modulation, Appl. Phys. Lett., Volume 5 (1964), p. 4

[2] M. DiDomemco Small-signal analysis of internal (coupling type) modulation of lasers, J. Appl. Phys., Volume 35 (1964), p. 2870

[3] H.W. Mocker; R.J. Collins Mode locked ruby laser, Appl. Phys. Lett., Volume 7 (1965), pp. 270-273

[4] A.J. DeMaria; D.A. Stetser; H. Heynau Mode locked Nd glass, Appl. Phys. Lett., Volume 8 (1966), pp. 174-176

[5] R.L. Fork; B.I. Greene; C.V. Shank First CPM, Appl. Phys. Lett., Volume 38 (1981), pp. 671-672

[6] J.A. Valdmanis; R.L. Fork Prism CPM, IEEE J. Quant. Electron., Volume 22 (1986), pp. 112-118

[7] P.F. Moulton Spectroscopic and laser characteristics of TiAl2O3, J. Opt. Soc. Am. B, Volume 3 (1986), pp. 125-133

[8] D.E. Spence; P.N. Kean; W. Sibbett 60-fs pulse generation from a self-mode-locked Ti–sapphire laser, Opt. Lett., Volume 16 (1991), pp. 42-44

[9] F. Krausz; M.E. Fermann; T. Brabec; P.F. Curley; M. Hofer; M.H. Ober; C. Spielmann; E. Wintner; A.J. Schmidt Femtosecond solid-state lasers, IEEE J. Quant. Electron., Volume 28 (1992), pp. 2097-2121

[10] D. Strickland; G. Mourou Compression of amplified chirped optical pulses, Opt. Commun., Volume 55 (1985), pp. 447-449

[11] P. Maine; D. Strickland; P. Bado; M. Pessot; G. Mourou Generation of ultrahigh peak power pulses by chirped pulse amplification, IEEE J. Quant. Electron. (1988), pp. 398-403

[12] S. Kuck; K. Petermann; U. Pohlmann; G. Huber Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12.Y3Al5O12, Y3Ga5012, J. Lum., Volume 68 (1996), pp. 1-14

[13] Y. Yamaguchi; K. Yamagishi; Y. Nobe The behavior of chromium ions in forsterite, J. Cryst. Growth (1993), pp. 128-996

[14] S. Kuck; K. Petermann; U. Pohlmann; G. Huber Near infrared emission of Cr4+ doped garnets: lifetimes, quantum efficiencies and emission cross sections, Phys. Rev. B, Volume 51 (1995), pp. 17323-17331

[15] H. Eilers; U. Hommerich; S.M. Jacobsen; W.M. Yen; K.R. Hoffman; W. Jia Spectroscopy and dynamics of Cr4+:Y3Al5O12, Phys. Rev. B, Volume 49 (1994), pp. 15505-15513

[16] W. Jia; H. Liu; S. Jaffe; W.M. Yen Spectroscopy of C3+ and Cr3+ ions in forsterite, Phys. Rev. B, Volume 43 (1991), p. 5234

[17] GLX-200 from Time Bandwidth Products (http://www.tbwp.com/) which is a femtosecond Nd:glass laser system, <250 fs, >400 mW at 1058 nm

[18] IC-100 fs > 100 mW at 1.06 μm from High Q Lasers (http://www.highqlaser.com/) which is a femtosecond Nd:glass laser ultracompact mode-locked laser

[19] L.K. Smith; S.A. Payne; W.L. Kway; L.L. Chase; B.H.T. Chai Investigation of the laser properties of Cr3+:LiSrGaF6, IEEE J. Quant. Electron., Volume 28 (1992), pp. 2612-2618

[20] S.A. Payne; L.L. Chase; H.W. Newkirk; L.K. Smith; W.F. Krupke LiCaAlF6:Cr3+: a promising new solid-state laser material, IEEE J. Quant. Electron., Volume 24 (1988), pp. 2243-2252

[21] B.W. Woods; S.A. Payne; J.E. Marion; R.S. Hughes; L.E. Davis Thermo-mechanical and thermo-optical properties of the LiCaAlF6:Cr3+ laser material, J. Opt. Soc. Am. B, Volume 8 (1991), pp. 970-977

[22] F. Balembois; F. Falcoz; F. Druon; F. Kerboull; P. Georges; A. Brun Theoretical and experimental investigations of small-signal gain for diode-pumped Q-switched Cr:LiSAF laser, IEEE J. Quant. Electron., Volume 33 (1997), p. 2

[23] S. Kuck, K.L. Schepler, Excited state absorption and stimulated emission measurements of Cr4+ doped Y3Al5O12, Y3Sc0.9Al4.1O12 and CaY2Mg2Ge2O12, in: Advanced Solid State Laser, OSA TOPS, 1996, pp. 94–99

[24] W. Krupke Ytterbium solid-state lasers—the first decade, IEEE J. Selected Topics Quant. Electron., Volume 6 (2000), pp. 1287-1296

[25] L. DeLoach; S. Payne; L. Chase; L. Smith; W. Kway; W. Krupke Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications, IEEE J. Quant. Electron., Volume 29 (1984), pp. 1179-1191

[26] F. Druon; F. Augé; F. Balembois; P. Georges; A. Brun; A. Aron; F. Mougel; G. Aka; D. Vivien Efficient, tunable, zero-line diode-pumped, continuous-wave Yb3+:Ca4LnO(BO3)3 (Ln = Gd, Y) lasers at room temperature and application to miniature lasers, J. Opt. Soc. Am. B, Volume 17 (2000) no. 1

[27] S. Chénais; F. Druon; F. Balembois; P. Georges; R. Gaumé; B. Viana; D. Vivien; A. Brenier; G. Boulon Diode-pumped Yb:GGG laser: comparison with Yb:YAG, Opt. Mat., Volume 22 (2003), pp. 99-106

[28] V. Kuleshov; A.A. Lagatsky; V.G. Shcherbitsky; V.P. Mikhailov; E. Heumann; T. Jensen; A. Diening; G. Huber CW laser performance of Yb and Er, Yb doped tungstates, Appl. Phys. B, Volume 64 (1997), p. 409

[29] P.-H. Haumesser; R. Gaumé; B. Viana; D. Vivien Determination of laser parameters of ytterbium-doped oxide crystalline materials, J. Opt. Soc. Am. B, Volume 19 (2002), pp. 2365-2375

[30] S. Chénais; F. Druon; F. Balembois; P. Georges; R. Gaumé; P.-H. Haumesser; B. Viana; G.P. Aka; D. Vivien Spectroscopy and efficient laser action from diode pumping of a new broadly tunable crystal: Yb3+:Sr3Y(BO3)3, J. Opt. Soc. Am. B, Volume 19 (2002), pp. 1083-1091

[31] P.-H. Haumesser; R. Gaumé; B. Viana; E. Antic-Fidancev; D. Vivien Spectroscopic and crystal-field of new Yb-doped laser materials, J. Phys. Condens. Matter, Volume 13 (2001), p. 5427

[32] P.-H. Haumesser; R. Gaumé; J.-M. Benitez; B. Viana; B. Ferrand; G. Aka; D. Vivien Czochralski growth of six Yb-doped double borate and silicate laser materials, J. Crystal Growth (2001), p. 233

[33] P.-H. Haumesser; R. Gaumé; G. Aka; D. Vivien Determination of laser parameters of ytterbium-doped oxide crystalline materials, J. Opt. Soc. Am. B, Volume 19 (2002), pp. 2365-2375

[34] G.A. Slack; D.W. Oliver Thermal conductivity of garnets and phonon scattering by rare-earth ions, Phys. Rev. B, Volume 4 (1971), pp. 592-609

[35] T.Y. Fan Heat generation in Nd:YAG and Yb:YAG, IEEE J. Quant. Electron., Volume 29 (1993), pp. 1457-1459

[36] T.Y. Fan Optimizing the efficiency and stored energy in quasi-three-level lasers, IEEE J. Quant. Electron., Volume 28 (1992), pp. 2692-2697

[37] F. Augé; F. Druon; F. Balembois; P. Georges; A. Brun; F. Mougel; G.P. Aka; D. Vivien Theoretical and experimental investigations of a diode-pumped quasi-three-level laser: the Yb3+-doped Ca4GdO(BO3)3 (Yb:GdCOB) laser, IEEE J. Quant. Electron., Volume 36 (2000), pp. 598-606

[38] C. Honninger; R. Paschotta; F. Morier-Genoud; M. Moser; U. Keller Q-switching stability limits of continuous-wave passive mode locking, J. Opt. Soc. Am. B, Volume 16 (1999), p. 46

[39] H. Page; K.I. Schaffers; L.D. DeLoach; G.D. Wilke; F.D. Patel; J.B. Tassano; S.A. Payne; W.F. Krupke; K.-T. Chen; A. Burger Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers, IEEE J. Quant. Electron., Volume 33 (1997), pp. 609-617

[40] I.T. Sorokina; E. Sorokin; A. Di Lieto; M. Tonelli; R.H. Page; K.I. Schaffers Efficient broadly tunable continuous-wave Cr2+:ZnSe laser, JOSA B, Volume 18 (2001), p. 926

[41] G.J. Wagner; T.J. Carrig; R.H. Page; K.I. Schaffers; J.-O. Ndap; X. Ma; A. Burger Continuous-wave broadly tunable Cr2+:ZnSe laser, Opt. Lett., Volume 24 (1999), p. 19

[42] L.D. DeLoach; R.H. Page; G.D. Wilke; S.A. Payne; W.F. Krupke Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media, IEEE J. Quant. Electron., Volume 32 (1996), pp. 885-895

[43] I. Sorokina; E. Sorokin; T. Carrig Femtosecond pulse generation from a SESAM mode locked Cr:ZnSe laser, Conference on Laser and Electro Optic, The Optical Society of America, 2006 (paper CMQ2)

[44] Mira 900 F from Coherent (http://www.coherentinc.com) delivering pulses <150 fs with a tunability from 700 to 980 nm

[45] Tsunami from Spectra Physics (http://www.splasers.com) with similar performance than Mira 900 F from Coherent

[46] Chameleon from Coherent (http://www.coherentinc.com) delivering pulses <150 fs with a tunability from 720 and 930 nm

[47] Mai Tai from Spectra Physics (http://www.splasers.com) delivering pulses <100 fs with a tunability from 710 and 920 nm

[48] sub-12-fs femtosource from Femtolasers (http://www.femtolasers.com)

[49] sub-35 fs Tsunami from Spectra Physics (http://www.splasers.com)

[50] GLX-200 from Time Bandwidth Products (http://www.tbwp.com/) which is a femtosecond Nd:glass laser system, <250 fs, >400 mW at 1058 nm

[51] IC-100 fs > 100 mW at 1.06 μm from High Q Lasers (http://www.highqlaser.com/) which is a femtosecond Nd:glass laser ultracompact mode-locked laser

[52] IC-10xx-xx fs ytterbium from High Q Lasers (http://www.highqlaser.com/) which is a femtosecond Yb:glass compact sub-200(400)-fs mode-locked with a tunability of 1030–1054 nm

[53] Y. Zaouter; J. Didierjean; F. Balembois; G. Leclin; F. Druon; P. Georges; J. Petit; P. Goldner; B. Viana 47-fs diode-pumped Yb3+:CaGdAlO4 laser, Opt. Lett., Volume 31 (2006), pp. 119-121

[54] S. Han; W. Lu; B.Y. Sheh Generation of sub-40 fs pulses from a mode-locked dual-gain-media Nd:glass laser, Appl. Phys. B, Volume 74 (2002), pp. 177-179

[55] F. Ilday; H. Lim; J.R. Buckley; F.W. Wise Practical all-fiber source of high-power, 120-fs pulses at 1 μm, Opt. Lett., Volume 28 (2003), pp. 1362-1364

[56] H. Lim; F. Ilday; F.W. Wise Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser, Opt. Lett., Volume 28 (2003), p. 660

[57] J. Limpert; T. Schreiber; T. Clausnitzer; K. Zallner; H.-J. Fuchs; E.-B. Kley; H. Zellmer; A. Tunnermann High-power femtosecond Yb-doped fiber amplifier, Opt. Express, Volume 10 (2002), p. 628

[58] H. Lim; F. Ilday; F.W. Wise Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control, Opt. Express, Volume 10 (2002), p. 1497 http://www.opticsexpress.org

[59] J. Limpert; T. Schreiber; S. Nolte; H. Zellmer; T. Tunnermann; R. Iliew; F. Lederer; J. Broeng; G. Vienne; A. Petersson; C. Jakobsen High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Express, Volume 11 (2003), p. 818

[60] D.E. Spence; P.N. Kean; W. Sibbett 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett., Volume 16 (1991), p. 42

[61] D.H. Sutter; G. Steinmeyer; L. Gallmann; N. Matuschek; F. Morier-Genoud; U. Keller; V. Scheuer; G. Angelow; T. Tschudi Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime, Opt. Lett., Volume 24 (1999), p. 631

[62] Y. Pang; V. Yanovsky; F. Wise; B.I. Minkov Self-mode-locked Cr:forsterite laser, Opt. Lett., Volume 18 (1993), p. 1168

[63] C. Chudoba; J.G. Fjimoto; E.P. Ippen; H.A. Haus; U. Morgner; F.X. Kartner; V. Scheuer; G. Angelow; T. Tschudi All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 m, Opt. Lett., Volume 26 (2001), pp. 292-294

[64] D.J. Ripin; C. Chudoba; J.T. Gopinath; J.G. Fujimoto; E.P. Ippen; U. Morgner; F.X. Kartner; V. Scheuer; G. Angelow; T. Tschudi Generation of 20-fs pulses by a prismless Cr4+:YAG laser, Opt. Lett., Volume 27 (2002), p. 61

[65] P.J. Conlon; Y.P. Tong; P.M.W. French; J.R. Taylor; A.V. Shestakov Passive mode locking and dispersion measurement of a sub-100-fs Cr4+:YAG laser, Opt. Lett., Volume 19 (1994), p. 1468

[66] J. Aus der Au; D. Kopf; F. Morier-Genoud; M. Moser; U. Keller 60-fs pulses from a diode-pumped Nd:glass laser, Opt. Lett., Volume 22 (1997), p. 307

[67] J.R. Lincoln; M.J.P. Dymott; A.I. Ferguson Femtosecond pulses from an all-solid-state Kerr-lens mode-locked Cr:LiSAF laser, Opt. Lett., Volume 19 (1994), p. 1210

[68] S. Uemura; K. Torizuka Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser, Opt. Lett., Volume 24 (1999), p. 780

[69] P.C. Wagenblast; U. Morgner; F. Grawert; T.R. Schibli; F.X. Kartner; V. Scheuer; G. Angelow; M.J. Lederer Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr3+:LiCAF laser oscillator by use of third-order dispersion-compensating double-chirped mirrors, Opt. Lett., Volume 27 (2002), p. 1726

[70] I.T. Sorokina; E. Sorokin; E. Wintner; A. Cassanho; H.P. Jenssen; R. Szipcs 14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift, Opt. Lett., Volume 22 (1997), p. 1716

[71] C. Honninger; R. Paschotta; M. Graf; F. Morier-Genoud; G. Zhang; M. Moser; S. Biswal; J. Nees; A. Braun; G. Mourou; I. Johannsen; A. Giesen; W. Seeber; U. Keller Ultrafast ytterbium-doped bulk laser amplifiers, Appl. Phys. B, Volume 69 (1999), p. 3

[72] E. Innerhofer; T. Sdmeyer; F. Brunner; R. Hring; A. Aschwanden; R. Paschotta; C. Honninger; M. Kumkar; U. Keller 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser, Opt. Lett., Volume 28 (2003), p. 367

[73] C. Honninger; F. Morier-Genoud; M. Moser; U. Keller; L.R. Brovelli; C. Harder Efficient and tunable diode-pumped femtosecond Yb:glass lasers, Opt. Lett. (1998), pp. 126-128

[74] F. Druon; F. Balembois; P. Georges; A. Brun; A. Courjaud; C. Honninger; F. Salin; A. Aron; F. Mougel; G. Aka; D. Vivien Generation of 90-fs pulses from a mode-locked diode-pumped Yb3+:Ca4GdO(BO3)3 laser, Opt. Lett., Volume 25 (2000), p. 423

[75] F. Druon; S. Chénais; P. Raybaut; F. Balembois; P. Georges; R. Gaum; G. Aka; B. Viana; S. Mohr; D. Kopf Diode-pumped Yb:Sr3Y(BO3)3 femtosecond laser, Opt. Lett., Volume 27 (2002), p. 197

[76] F. Brunner; G.J. Sphler; J. Aus der Au; L. Krainer; F. Morier-Genoud; R. Paschotta; N. Lichtenstein; S. Weiss; C. Harder; A.A. Lagatsky; A. Abdolvand; N.V. Kuleshov; U. Keller Diode-pumped femtosecond Yb:KGW laser with 1.1-W average power, Opt. Lett., Volume 25 (2000), p. 1119

[77] F. Brunner; T. Sdmeyer; E. Innerhofer; F. Morier-Genoud; R. Paschotta; V.E. Kisel; V.G. Shcherbitsky; N.V. Kuleshov; J. Gao; K. Contag; A. Giesen; U. Keller 240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser, Opt. Lett., Volume 27 (2002), p. 1162

[78] H. Liu; J. Nees; G. Mourou Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser, Opt. Lett., Volume 26 (2001), p. 1723

[79] P. Klopp; V. Petrov; U. Griebner; G. Erbert Passively mode-locked Yb:KYW laser pumped by a tapered diode laser, Opt. Express, Volume 10 (2002), pp. 108-113

[80] F. Druon; F. Balembois; P. Georges Ultra-short-pulsed and highly-efficient diode-pumped Yb:SYS mode-locked oscillators, Opt. Express, Volume 12 (2004), pp. 5005-5012

[81] F. Druon; S. Chnais; P. Raybaut; F. Balembois; P. Georges; R. Gaum; P. Haumesser; B. Viana; D. Vivien; S. Dhellemmes; V. Ortiz; C. Larat Apatite-structure crystal, Yb3+:SrY4(SiO4)3O, for the development of diode-pumped femtosecond lasers, Opt. Lett., Volume 27 (2002), pp. 1914-1916

[82] F. Druon; S. Chénais; F. Balembois; P. Georges; R. Gaumé; B. Viana Diode-pumped continuous-wave and femtosecond laser operations of a heterocomposite crystal Yb3+:SrY4(SiO4)3O||Y2Al5O12, Opt. Lett., Volume 30 (2005), pp. 857-859

[83] A. Lagatsky; A. Sarmani; C. Brown; W. Sibbett; V. Kisel; A. Selivanov; I. Denisov; A. Troshin; K. Yumashev; N. Kuleshov; V. Matrosov; T. Matrosova; M. Kupchenko Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers, Opt. Lett., Volume 30 (2005), pp. 3234-3236

[84] V. Kisel; A. Troshin; V. Shcherbitsky; N. Kuleshov; V. Matrosov; T. Matrosova; M. Kupchenko; F. Brunner; R. Paschotta; F. Morier-Genoud; U. Keller Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser, Opt. Lett., Volume 30 (2005), pp. 1150-1152

[85] A. Lucca; G. Debourg; M. Jacquemet; F. Druon; F. Balembois; P. Georges; P. Camy; J. Doualan; R. Moncorgé High-power diode-pumped Yb3+:CaF2 femtosecond laser, Opt. Lett., Volume 29 (2004), pp. 2767-2769

[86] Y. Zaouter; J. Didierjean; F. Balembois; G. Lucas-Leclin; F. Druon; P. Georges; J. Petit; P. Goldner; B. Viana 47-fs diode-pumped Yb3+:CaGdAlO4 laser, Opt. Lett., Volume 31 (2006), pp. 119-121

[87] I. Sorokina; E. Sorokin; T. Carrig Femtosecond pulse generation from a SESAM mode locked Cr:ZnSe laser, Conference on Laser and Electro Optic, The Optical Society of America, 2006 (paper CMQ2)

[88] I. Sorokina; E. Sorokin; T. Carrig; K. Schaffers A SESAM passively mode-locked Cr:ZnS laser, Advanced Solid-State Photonics 2006 Technical Digest, The Optical Society of America, Washington, DC, 2006 (TuA4)

Cité par Sources :

Commentaires - Politique