Comptes Rendus
Coherent combining of fibre lasers
[Combinaison cohérente de lasers à fibres]
Comptes Rendus. Physique, Volume 7 (2006) no. 2, pp. 244-253.

Le développement récent des lasers à fibres les rend attractifs pour supplanter les lasers massifs notamment dans le domaine des hautes puissances. Une solution pour la montée en puissance consiste à combiner de manière cohérente plusieurs lasers fibrés de puissance modérée, déjà optimisés et utilisant une technologie éprouvée. Les techniques de combinaison cohérente se divisent en deux grandes catégories : celles exploitant la notion de densification de pupilles pour lesquelles la combinaison se produit en champ lointain et celles utilisant un résonateur multiaxes construit autour d'un interféromètre. Dans ce cas, l'émission est unimodale.

Recent development of fibre lasers makes them good candidates to supplant bulk lasers especially for high power applications. A solution for power scaling consists in combining several standard fibre lasers emitting moderate power. Coherent combining techniques can be classified in two broad classes: aperture-filling methods and collinear interferometric summation methods. For the first, the phase-locking of the different emitters leads to a power combining only in the far field, whereas for the second, the power combining is obtained in both near field and far field.

Publié le :
DOI : 10.1016/j.crhy.2006.01.019
Keywords: Coherent combining, Fibre lasers
Mot clés : Combinaison cohérente, Laser à fibre
Agnès Desfarges-Berthelemot 1 ; Vincent Kermène 1 ; David Sabourdy 1 ; Johan Boullet 1 ; Philippe Roy 1 ; Jerôme Lhermite 1 ; Alain Barthélémy 1

1 XLIM, UMR CNRS 6172, 123, avenue Albert Thomas, 87060 Limoges cedex, France
@article{CRPHYS_2006__7_2_244_0,
     author = {Agn\`es Desfarges-Berthelemot and Vincent Kerm\`ene and David Sabourdy and Johan Boullet and Philippe Roy and Jer\^ome Lhermite and Alain Barth\'el\'emy},
     title = {Coherent combining of fibre lasers},
     journal = {Comptes Rendus. Physique},
     pages = {244--253},
     publisher = {Elsevier},
     volume = {7},
     number = {2},
     year = {2006},
     doi = {10.1016/j.crhy.2006.01.019},
     language = {en},
}
TY  - JOUR
AU  - Agnès Desfarges-Berthelemot
AU  - Vincent Kermène
AU  - David Sabourdy
AU  - Johan Boullet
AU  - Philippe Roy
AU  - Jerôme Lhermite
AU  - Alain Barthélémy
TI  - Coherent combining of fibre lasers
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 244
EP  - 253
VL  - 7
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.01.019
LA  - en
ID  - CRPHYS_2006__7_2_244_0
ER  - 
%0 Journal Article
%A Agnès Desfarges-Berthelemot
%A Vincent Kermène
%A David Sabourdy
%A Johan Boullet
%A Philippe Roy
%A Jerôme Lhermite
%A Alain Barthélémy
%T Coherent combining of fibre lasers
%J Comptes Rendus. Physique
%D 2006
%P 244-253
%V 7
%N 2
%I Elsevier
%R 10.1016/j.crhy.2006.01.019
%G en
%F CRPHYS_2006__7_2_244_0
Agnès Desfarges-Berthelemot; Vincent Kermène; David Sabourdy; Johan Boullet; Philippe Roy; Jerôme Lhermite; Alain Barthélémy. Coherent combining of fibre lasers. Comptes Rendus. Physique, Volume 7 (2006) no. 2, pp. 244-253. doi : 10.1016/j.crhy.2006.01.019. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.019/

[1] Y. Jeong et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power, Opt. Express, Volume 12 (2004), pp. 6088-6092

[2] J. Limpert et al. High power air-clad large-mode-area photonic crystal fiber laser, Opt. Express, Volume 11 (2003), p. 818

[3] P. Glas; D. Fisher Cladding-pumped large mode area Nd-doped holey fiber laser, Opt. Express, Volume 10 (2002), p. 286

[4] J.R. Leger; G. Mowry External diode-laser-array with mode-selecting mirror, Appl. Phys. Lett., Volume 63 (1993), pp. 2884-2886

[5] V. Daneu et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity, Opt. Lett., Volume 25 (2000), pp. 405-407

[6] J.R. Leger et al. Coherent laser addition using binary phase gratings, App. Opt., Volume 26 (1987), pp. 4391-4399

[7] M. Tondusson et al. Coherent combination of four laser beams in a multi-axis Fourier cavity using a diffractive optical element, J. Opt. A: Pure Appl. Opt., Volume 3 (2001), pp. 521-526

[8] T.Y. Fan; A. Sanchez Coherent (phase array) and wavelength (spectral) beam combining compared, Proc. SPIE, Volume 5709 (2005), pp. 157-164

[9] S.J. Augst et al. Coherent beam combining and phase noise measurements of Ytterbium fiber amplifiers, Opt. Lett., Volume 29 (2004), pp. 474-476

[10] M.L. Minden et al. Self-organized coherence in fiber laser arrays, Proc. SPIE, Volume 5335 (2004), pp. 89-97

[11] H. Bruesselbach et al. Power-scalable phase-compensating fiber-array transceiver for laser communications through the atmosphere, J. Opt. Soc. Amer. B, Volume 22 (2005), pp. 347-353

[12] J. Morel et al. Coherent coupling of an array of Nd3+-doped single-mode fiber lasers by use of an intracavity phase grating, Opt. Lett., Volume 18 (1993), pp. 1520-1522

[13] D. Sabourdy et al. Power scaling of fibre lasers with all-fibre interferometric cavity, Electron. Lett., Volume 38 (2002), pp. 692-693

[14] A. Shirakawa, et al., Power summation and bandwidth narrowing in coherently coupled fiber-laser array, in: CLEO/QELS '04 San Francisco CThGG2

[15] H. Bruesselbach, et al., 200 W self-organized coherent fiber arrays, in: CLEO/QELS '05 Baltimore CMDD4

[16] A. Shirakawa et al. Coherent addition of fiber lasers by use of a fiber coupler, Opt. Express, Volume 10 (2002), pp. 1167-1172

[17] T.B. Simpson et al. Extraction characteristics of a dual fiber compound cavity, Opt. Express, Volume 10 (2002), pp. 1060-1073

[18] H. Bruesselbach et al. Self-organized coherence in fiber laser arrays, Opt. Lett., Volume 30 (2005), pp. 1339-1341

[19] D. Sabourdy et al. Efficient coherent combining of widely tunable fiber lasers, Opt. Express, Volume 11 (2003), pp. 87-97

[20] D. Sabourdy et al. Coherent combining of Q-switched fibre lasers, Electron. Lett., Volume 40 (2004), pp. 1254-1255

[21] M. DiDomenico Characteristics of a single-frequency Michelson-type He–Ne gas laser, IEEE J.Q. Electronics QE-2 (1966), pp. 311-322

[22] M. Wrage et al. Phase locking in a multicore fiber laser by means of a Talbot resonator, Opt. Lett., Volume 25 (2000), pp. 1436-1438

[23] M. Wrage et al. Combined phase-locking and beam shaping of a multicore fiber laser by structured mirrors, Opt. Lett., Volume 26 (2001), pp. 980-982

[24] M. Wrage et al. Phase-locking of a multicore fiber laser by wave propagation through an annular waveguide, Opt. Comm., Volume 205 (2002), pp. 367-375

[25] P.K. Cheo A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array, IEEE Phot. Tech. Lett., Volume 13 (2001), pp. 439-441

[26] E.J. Bochove et al. Self-organization in a multicore fiber array, Opt. Lett., Volume 18 (2003), pp. 1200-1202

[27] J. Boullet et al. Coherent combining in an Yb doped double core fiber laser, Opt. Lett., Volume 30 (2005), pp. 1962-1964

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Laser source requirements for coherent lidars based on fiber technology

Jean-Pierre Cariou; Béatrice Augere; Matthieu Valla

C. R. Phys (2006)


Photonic crystal fibres for lasers and amplifiers

Philippe Roy; Philippe Leproux; Sébastien Février; ...

C. R. Phys (2006)