[Développement de la géométrie fractale dans un système gravitationnel à une dimension]
Nous étudions l'evolution d'un système gravitationnel instable à une dimension dans un univers dominé par la matière. Des transformations d'échelle en espace et temps conduisent à un problème à N-corps décrit par un ensemble autonome d'équations couplées donnant l'évolution du système dans l'espace des phases. Les simulations numériques montrent que le système construit une structure hiérarchique. Comme pour les observations de galaxies, l'analyse des résultats suggère qu'au cours du temps, la distribution des positions des particules développe une géométrie bifractale.
We study a one dimensional model of gravitational instability in a matter dominated universe. Careful scaling in both space and time results in an N-body problem governed by an autonomous set of coupled equations for the evolution of the system in phase space. Using dynamical simulation, we demonstrate that the system exhibits hierarchical structure formation. In common with galaxy observations, careful analysis suggests that, as time evolves, the distribution of particle positions develops bifractal geometry.
Mots-clés : Gravité, Fractal, Cosmologie, Structure hiérarchique
Bruce N. Miller 1 ; Jean-Louis Rouet 2, 3
@article{CRPHYS_2006__7_3-4_383_0, author = {Bruce N. Miller and Jean-Louis Rouet}, title = {Development of fractal geometry in a one-dimensional gravitational system}, journal = {Comptes Rendus. Physique}, pages = {383--390}, publisher = {Elsevier}, volume = {7}, number = {3-4}, year = {2006}, doi = {10.1016/j.crhy.2006.02.005}, language = {en}, }
Bruce N. Miller; Jean-Louis Rouet. Development of fractal geometry in a one-dimensional gravitational system. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 383-390. doi : 10.1016/j.crhy.2006.02.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.02.005/
[1] Current Science, 88 (2005), p. 1088
[2] Annual Review of Astronomy and Astrophysics, 36 (1998), p. 599
[3] Fractals in astronomy (A. Heck, ed.), Vistas in Astronomy, vol. 33, Pergamon, Oxford, 1990, pp. 357-370
[4] Applying Fractals in Astronomy (A. Heck; J.M. Perdang, eds.), Springer-Verlag, Berlin, 1991, pp. 161-179
[5] Astronomy and Astrophysics, 395 (2002), p. 399
[6] Astronomical Journal, 393 (1922), p. 437
[7] Reviews of Modern Physics, 61 (1989), p. 185
[8] Astrophysical Journal, 547 (2001), p. 531
[9] Journal of Fluid Mechanics, 344 (1997), p. 339
[10] Physics Letters A, 279 (2001), p. 226
[11] Euro Physics Letters, 58 (2002), p. 356
[12] Physical Review E, 65 (2002), p. 056121
[13] Astronomy and Astrophysics, 226 (1989), p. 373
[14] Physica D, 186 (2003), p. 171
[15] Principles of Physical Cosmology, Princeton Univ. Press, Princeton, NJ, 1993
[16] Physical Review A, 33 (1986), p. 1141
[17] Physica A, 309 (2002), p. 183
[18] Chaos in Dynamical Systems, Cambridge Univ. Press, Cambridge, UK, 2002
[19] Fractals, Plenum, New York, 1988
- From chaos to cosmology: insights gained from 1D gravity, Classical and Quantum Gravity, Volume 40 (2023) no. 7, p. 073001 | DOI:10.1088/1361-6382/acb8fb
- Self-similarity and stable clustering in a family of scale-free cosmologies, Monthly Notices of the Royal Astronomical Society, Volume 443 (2014) no. 3, p. 2126 | DOI:10.1093/mnras/stu1245
- Nonequilibrium statistical mechanics of systems with long-range interactions, Physics Reports, Volume 535 (2014) no. 1, p. 1 | DOI:10.1016/j.physrep.2013.10.001
- Exponents of non-linear clustering in scale-free one-dimensional cosmological simulations, Monthly Notices of the Royal Astronomical Society, Volume 429 (2013) no. 4, p. 3423 | DOI:10.1093/mnras/sts607
- Non-linear gravitational clustering of cold matter in an expanding universe: indications from 1D toy models, Monthly Notices of the Royal Astronomical Society, Volume 413 (2011) no. 2, p. 1439 | DOI:10.1111/j.1365-2966.2011.18225.x
- Gravitational force in an infinite one-dimensional Poisson distribution, Physical Review E, Volume 81 (2010) no. 2 | DOI:10.1103/physreve.81.021102
- One-dimensional gravity in infinite point distributions, Physical Review E, Volume 80 (2009) no. 4 | DOI:10.1103/physreve.80.041108
Cité par 7 documents. Sources : Crossref
Commentaires - Politique