Comptes Rendus
Development of fractal geometry in a one-dimensional gravitational system
Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 383-390.

We study a one dimensional model of gravitational instability in a matter dominated universe. Careful scaling in both space and time results in an N-body problem governed by an autonomous set of coupled equations for the evolution of the system in phase space. Using dynamical simulation, we demonstrate that the system exhibits hierarchical structure formation. In common with galaxy observations, careful analysis suggests that, as time evolves, the distribution of particle positions develops bifractal geometry.

Nous étudions l'evolution d'un système gravitationnel instable à une dimension dans un univers dominé par la matière. Des transformations d'échelle en espace et temps conduisent à un problème à N-corps décrit par un ensemble autonome d'équations couplées donnant l'évolution du système dans l'espace des phases. Les simulations numériques montrent que le système construit une structure hiérarchique. Comme pour les observations de galaxies, l'analyse des résultats suggère qu'au cours du temps, la distribution des positions des particules développe une géométrie bifractale.

Published online:
DOI: 10.1016/j.crhy.2006.02.005
Keywords: Gravity, Fractal, Cosmology, Hierarchical structure
Mots-clés : Gravité, Fractal, Cosmologie, Structure hiérarchique

Bruce N. Miller 1; Jean-Louis Rouet 2, 3

1 Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA
2 Institut des sciences de la terre d'Orléans (ISTO), UMR6113 CNRS/université d'Orléans, 1A, rue de la Férollerie, 45071 Orléans cedex 2, France
3 Laboratoire de mathématique, applications et physique mathématique, UMR 6628, université d'Orléans, UFR des sciences, 45067 Orléans cedex 2, France
@article{CRPHYS_2006__7_3-4_383_0,
     author = {Bruce N. Miller and Jean-Louis Rouet},
     title = {Development of fractal geometry in a one-dimensional gravitational system},
     journal = {Comptes Rendus. Physique},
     pages = {383--390},
     publisher = {Elsevier},
     volume = {7},
     number = {3-4},
     year = {2006},
     doi = {10.1016/j.crhy.2006.02.005},
     language = {en},
}
TY  - JOUR
AU  - Bruce N. Miller
AU  - Jean-Louis Rouet
TI  - Development of fractal geometry in a one-dimensional gravitational system
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 383
EP  - 390
VL  - 7
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.02.005
LA  - en
ID  - CRPHYS_2006__7_3-4_383_0
ER  - 
%0 Journal Article
%A Bruce N. Miller
%A Jean-Louis Rouet
%T Development of fractal geometry in a one-dimensional gravitational system
%J Comptes Rendus. Physique
%D 2006
%P 383-390
%V 7
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2006.02.005
%G en
%F CRPHYS_2006__7_3-4_383_0
Bruce N. Miller; Jean-Louis Rouet. Development of fractal geometry in a one-dimensional gravitational system. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 383-390. doi : 10.1016/j.crhy.2006.02.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.02.005/

[1] J.S. Bagla Current Science, 88 (2005), p. 1088

[2] E. Bertschinger Annual Review of Astronomy and Astrophysics, 36 (1998), p. 599

[3] J.-L. Rouet; M.R. Feix; M. Navet Fractals in astronomy (A. Heck, ed.), Vistas in Astronomy, vol. 33, Pergamon, Oxford, 1990, pp. 357-370

[4] J.-L. Rouet; E. Jamin; M.R. Feix Applying Fractals in Astronomy (A. Heck; J.M. Perdang, eds.), Springer-Verlag, Berlin, 1991, pp. 161-179

[5] D. Fanelli; E. Aurell Astronomy and Astrophysics, 395 (2002), p. 399

[6] L.A. Kofman; D. Pogosyan; S.F. Shandarin; A.L. Melott Astronomical Journal, 393 (1922), p. 437

[7] S.F. Shandarin; Ya.B. Zeldovich Reviews of Modern Physics, 61 (1989), p. 185

[8] T. Tatekawa; K. Maeda Astrophysical Journal, 547 (2001), p. 531

[9] S.N. Gurbatov; S.I. Simdyankin; U. Frisch; E. Aurell; G. Toth Journal of Fluid Mechanics, 344 (1997), p. 339

[10] H. Koyama; T. Konishi Physics Letters A, 279 (2001), p. 226

[11] H. Koyama; T. Konishi Euro Physics Letters, 58 (2002), p. 356

[12] B.N. Miller; J.-L. Rouet Physical Review E, 65 (2002), p. 056121

[13] R. Balian; R. Schaeffer Astronomy and Astrophysics, 226 (1989), p. 373

[14] E. Aurell; D. Fanelli; S.N. Gurbatov; A.Y. Moshkov Physica D, 186 (2003), p. 171

[15] P.J.E. Peebles Principles of Physical Cosmology, Princeton Univ. Press, Princeton, NJ, 1993

[16] T.C. Halsey; M.H. Jensen; L.P. Kadanoff; I. Procaccia; B. Shraiman Physical Review A, 33 (1986), p. 1141

[17] J.L. McCauley Physica A, 309 (2002), p. 183

[18] E. Ott Chaos in Dynamical Systems, Cambridge Univ. Press, Cambridge, UK, 2002

[19] J. Feder Fractals, Plenum, New York, 1988

Cited by Sources:

Comments - Policy