We study a one dimensional model of gravitational instability in a matter dominated universe. Careful scaling in both space and time results in an N-body problem governed by an autonomous set of coupled equations for the evolution of the system in phase space. Using dynamical simulation, we demonstrate that the system exhibits hierarchical structure formation. In common with galaxy observations, careful analysis suggests that, as time evolves, the distribution of particle positions develops bifractal geometry.
Nous étudions l'evolution d'un système gravitationnel instable à une dimension dans un univers dominé par la matière. Des transformations d'échelle en espace et temps conduisent à un problème à N-corps décrit par un ensemble autonome d'équations couplées donnant l'évolution du système dans l'espace des phases. Les simulations numériques montrent que le système construit une structure hiérarchique. Comme pour les observations de galaxies, l'analyse des résultats suggère qu'au cours du temps, la distribution des positions des particules développe une géométrie bifractale.
Mots-clés : Gravité, Fractal, Cosmologie, Structure hiérarchique
Bruce N. Miller 1; Jean-Louis Rouet 2, 3
@article{CRPHYS_2006__7_3-4_383_0, author = {Bruce N. Miller and Jean-Louis Rouet}, title = {Development of fractal geometry in a one-dimensional gravitational system}, journal = {Comptes Rendus. Physique}, pages = {383--390}, publisher = {Elsevier}, volume = {7}, number = {3-4}, year = {2006}, doi = {10.1016/j.crhy.2006.02.005}, language = {en}, }
Bruce N. Miller; Jean-Louis Rouet. Development of fractal geometry in a one-dimensional gravitational system. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 383-390. doi : 10.1016/j.crhy.2006.02.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.02.005/
[1] Current Science, 88 (2005), p. 1088
[2] Annual Review of Astronomy and Astrophysics, 36 (1998), p. 599
[3] Fractals in astronomy (A. Heck, ed.), Vistas in Astronomy, vol. 33, Pergamon, Oxford, 1990, pp. 357-370
[4] Applying Fractals in Astronomy (A. Heck; J.M. Perdang, eds.), Springer-Verlag, Berlin, 1991, pp. 161-179
[5] Astronomy and Astrophysics, 395 (2002), p. 399
[6] Astronomical Journal, 393 (1922), p. 437
[7] Reviews of Modern Physics, 61 (1989), p. 185
[8] Astrophysical Journal, 547 (2001), p. 531
[9] Journal of Fluid Mechanics, 344 (1997), p. 339
[10] Physics Letters A, 279 (2001), p. 226
[11] Euro Physics Letters, 58 (2002), p. 356
[12] Physical Review E, 65 (2002), p. 056121
[13] Astronomy and Astrophysics, 226 (1989), p. 373
[14] Physica D, 186 (2003), p. 171
[15] Principles of Physical Cosmology, Princeton Univ. Press, Princeton, NJ, 1993
[16] Physical Review A, 33 (1986), p. 1141
[17] Physica A, 309 (2002), p. 183
[18] Chaos in Dynamical Systems, Cambridge Univ. Press, Cambridge, UK, 2002
[19] Fractals, Plenum, New York, 1988
Cited by Sources:
Comments - Policy