Comptes Rendus
Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones
Comptes Rendus. Physique, Volume 7 (2006) no. 5, pp. 501-508.

The ever-rising diffusion of cellular phones has brought about an increased concern for the possible consequences of electromagnetic radiation on human health. Possible thermal effects have been investigated, via experimentation or simulation, by several research projects in the last decade. Concerning numerical modeling, the power absorption in a user's head is generally computed using discretized models built from clinical MRI data. The vast majority of such numerical studies have been conducted using Finite Differences Time Domain methods, although strong limitations of their accuracy are due to heterogeneity, poor definition of the detailed structures of head tissues (staircasing effects), etc. In order to propose numerical modeling using Finite Element or Discontinuous Galerkin Time Domain methods, reliable automated tools for the unstructured discretization of human heads are also needed. Results presented in this article aim at filling the gap between human head MRI images and the accurate numerical modeling of wave propagation in biological tissues and its thermal effects.

La diffusion croissante des téléphones mobiles rend nécessaire des études précises des effets des ondes émises sur les utilisateurs. Les effets thermiques ont été majoritairement simulés numériquement à partir d'images médicales issues de scanners et de méthodes de différences finies sur grilles cartésiennes, malgré leur faible précision sur des matériaux hautement hétérogènes. Peu d'études s'appuyant sur des reconstructions précises des structures externes et internes des tissus de la tête d'une part, et d'autre part sur des méthodes numériques s'appuyant sur des maillages non-structurés de type éléments finis ont été menées, car la chaine permettant d'obtenir une discrétisation non-structurée à partir d'images médicales manque cruellement. Les résultats présentés ici illustrent quelques avancées récentes dans la génération de maillages non-structurés à partir d'images médicales et dans les calculs utilisant des éléments finis discontinus, tout en comportant quelques aspects prospectifs sur les effets thermiques.

Published online:
DOI: 10.1016/j.crhy.2006.03.002
Keywords: Electromagnetic waves, Heterogeneous tissue, Thermal effects, Medical imaging, Unstructured mesh generation, Discontinuous Galerkin methods
Mot clés : Électromagnétisme, Tissus hétérogènes, Imagerie médicale, Génération de maillages non-structurés, Méthodes de type Galerkine discontinu
Gilles Scarella 1; Olivier Clatz 2; Stéphane Lanteri 1; Grégory Beaume 1; Steve Oudot 2; Jean-Philippe Pons 3; Sergo Piperno 1; Patrick Joly 2; Joe Wiart 4

1 Cermics, ENPC, INRIA, 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée cedex 2, France
2 INRIA, 2004, route des lucioles, BP 93, 06902 Sophia Antipolis, France
3 Certis, ENPC, INRIA, 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée cedex 2, France
4 France Télécom Research & Development, 92794 Issy-les-Moulineaux, France
@article{CRPHYS_2006__7_5_501_0,
     author = {Gilles Scarella and Olivier Clatz and St\'ephane Lanteri and Gr\'egory Beaume and Steve Oudot and Jean-Philippe Pons and Sergo Piperno and Patrick Joly and Joe Wiart},
     title = {Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones},
     journal = {Comptes Rendus. Physique},
     pages = {501--508},
     publisher = {Elsevier},
     volume = {7},
     number = {5},
     year = {2006},
     doi = {10.1016/j.crhy.2006.03.002},
     language = {en},
}
TY  - JOUR
AU  - Gilles Scarella
AU  - Olivier Clatz
AU  - Stéphane Lanteri
AU  - Grégory Beaume
AU  - Steve Oudot
AU  - Jean-Philippe Pons
AU  - Sergo Piperno
AU  - Patrick Joly
AU  - Joe Wiart
TI  - Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 501
EP  - 508
VL  - 7
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.03.002
LA  - en
ID  - CRPHYS_2006__7_5_501_0
ER  - 
%0 Journal Article
%A Gilles Scarella
%A Olivier Clatz
%A Stéphane Lanteri
%A Grégory Beaume
%A Steve Oudot
%A Jean-Philippe Pons
%A Sergo Piperno
%A Patrick Joly
%A Joe Wiart
%T Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones
%J Comptes Rendus. Physique
%D 2006
%P 501-508
%V 7
%N 5
%I Elsevier
%R 10.1016/j.crhy.2006.03.002
%G en
%F CRPHYS_2006__7_5_501_0
Gilles Scarella; Olivier Clatz; Stéphane Lanteri; Grégory Beaume; Steve Oudot; Jean-Philippe Pons; Sergo Piperno; Patrick Joly; Joe Wiart. Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones. Comptes Rendus. Physique, Volume 7 (2006) no. 5, pp. 501-508. doi : 10.1016/j.crhy.2006.03.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.03.002/

[1] P. Bernardi; M. Cavagnaro; S. Pisa; E. Piuzzi Specific absorption rate and temperature increases in the head of a cellular phone user, IEEE Trans. Microwave Theory Tech., Volume 48 (2000), pp. 1118-1126

[2] K.S. Yee Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas and Propagation, Volume AP-16 (1966), pp. 302-307

[3] H.H. Pennes Analysis of tissue and arterial blood temperature in the resting human forearm, J. Appl. Physiol., Volume 1 (1948), pp. 93-122

[4] P. Ratiu; B. Hillen et al. Visible Human 2.0—the next generation, Medicine Meets Virtual Reality, vol. 11, IOS Press, 2003, pp. 275-281

[5] W. Lorensen, H. Cline, Marching cubes: a high resolution 3D surface construction algorithm, in: Siggraph 87, vol. 21, 1987, pp. 163–170

[6] P. Frey, YAMS, a fully automatic adaptive isotropic surface remeshing procedure, INRIA technical report 0252, 2001

[7] L.P. Chew, Guaranteed-quality mesh generation for curved surfaces, in: Proc. 9th Annu. ACM Sympos. Comput. Geom., 1993, pp. 274–280

[8] J.-D. Boissonnat; S. Oudot Provably good sampling and meshing of surfaces, Graphical Models, Volume 67 (2005) no. 5, pp. 405-451

[9] O. Faugeras et al. Variational, geometric and statistical methods for modeling brain anatomy and function, Neuroimage, Volume 23 (2004), p. S46-S55

[10] J. Burguet; I. Bloch Homotopic Labeling of Elements in a Tetrahedral Mesh for the Head Modeling, Lect. Notes in Comput. Sci., vol. 3287, Springer-Verlag, Berlin/New York, 2004

[11] P. Frey; P.-L. George Mesh Generation, Hermes Science Publications, 2000

[12] S. Piperno; M. Remaki; L. Fezoui A non-diffusive finite volume scheme for the 3D Maxwell equations on unstructured meshes, SIAM J. Numer. Anal., Volume 39 (2002) no. 6, pp. 2089-2108

[13] J. Hesthaven; T. Warburton Nodal high-order methods on unstructured grids. I: Time-domain solution of Maxwell's equations, J. Comput. Phys., Volume 181 (2002) no. 1, pp. 186-221

[14] O.M.P. Gandhi; Q.X. Li; G. Kang Temperature rise for the human head for cellular telephones and for peak SARs prescribed in safety guidelines, IEEE Trans. Microwave Theory Tech., Volume 49 (2001) no. 9, pp. 1607-1613

Cited by Sources:

Comments - Policy


Articles of potential interest

Modelling of electromagnetic wave interactions with the human body

Man-Faï Wong; Joe Wiart

C. R. Phys (2005)


Discontinuous Galerkin methods for Maxwell's equations in the time domain

Gary Cohen; Xavier Ferrieres; Sébastien Pernet

C. R. Phys (2006)