[Guides d'ondes optiques en cristaux laser]
Cet article fait le point sur les recherches récentes sur différents types de guides d'ondes optiques cristallins plans et canaux, ainsi que sur leurs méthodes de fabrication, comme l'épitaxie en phase liquide, la déposition par laser pulsé, le thermocollage, l'attaque par ions réactifs ou faisceau ionique, l'attaque chimique humide, la diffusion ionique, l'échange de protons, l'implantation par faisceau ionique, et la gravure par laser femtoseconde, ou encore le dopage laser de guides d'ondes par des ions de terres rares et de métaux de transition dans des oxydes cristallins tels que Al2O3, Y3Al5O12, YAlO3, KY(WO4)2 et LiNbO3.
This article reviews the recent research on different types of planar and channel crystalline optical waveguides, fabrication methods such as liquid phase epitaxy, pulsed laser deposition, thermal bonding, reactive ion or ion beam etching, wet chemical etching, ion in-diffusion, proton exchange, ion beam implantation, and femtosecond laser writing, as well as waveguide laser operation of rare-earth and transition-metal ions in oxide crystalline materials such as Al2O3, Y3Al5O12, YAlO3, KY(WO4)2, and LiNbO3.
Mot clés : Guides d'ondes optiques, Cristaux laser
Markus Pollnau 1, 2 ; Yaroslav E. Romanyuk 1
@article{CRPHYS_2007__8_2_123_0, author = {Markus Pollnau and Yaroslav E. Romanyuk}, title = {Optical waveguides in laser crystals}, journal = {Comptes Rendus. Physique}, pages = {123--137}, publisher = {Elsevier}, volume = {8}, number = {2}, year = {2007}, doi = {10.1016/j.crhy.2006.04.002}, language = {en}, }
Markus Pollnau; Yaroslav E. Romanyuk. Optical waveguides in laser crystals. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 123-137. doi : 10.1016/j.crhy.2006.04.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.04.002/
[1] Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media, Opt. Mater., Volume 11 (1999), pp. 101-114
[2] Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes, RCA Rev., Volume 24 (1963) no. 4, pp. 603-615
[3] Optical waveguides in single-crystal garnet films, Appl. Phys. Lett., Volume 21 (1972) no. 5, pp. 207-209
[4] Epitaxial growth and spectroscopic investigation of BaSO4:Mn6+ layers, Appl. Phys. B, Volume 75 (2002) no. 1, pp. 59-62
[5] Low-temperature liquid phase epitaxy and optical waveguiding of rare-earth-ion doped KY(WO4)2 thin layers, J. Cryst. Growth, Volume 269 (2004) no. 2–4, pp. 377-384
[6] Y.E. Romanyuk, Liquid-phase epitaxy of doped KY(WO4)2 layers for waveguide lasers, Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2005
[7] Growth and low-threshold laser oscillation of an epitaxially grown Nd:YAG waveguide, Opt. Lett., Volume 17 (1992) no. 11, pp. 10-12
[8] Growth of Nd:potassium gadolinium tungstate thin-film waveguides by pulsed laser deposition, Appl. Phys. Lett., Volume 76 (2000) no. 18, pp. 2490-2492
[9] Planar waveguide lasers and structures created by laser ablation—an overview, Czech. J. Phys., Volume 48 (1998) no. 5, pp. 577-597
[10] Thermally bonded planar waveguide lasers, Appl. Phys. Lett., Volume 71 (1997) no. 9, pp. 1139-1141
[11] Thermally bonded Yb:YAG planar waveguide laser, Opt. Commun., Volume 164 (1999) no. 4–6, pp. 185-190
[12] A comparative study on methods to structure sapphire, Appl. Surf. Sci., Volume 208–209 (2003), pp. 322-326
[13] Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide, Appl. Phys. B, Volume 75 (2002) no. 1, pp. 15-17
[14] Study of the fabrication of the channel waveguide in Ti:sapphire layers, Laser Phys., Volume 8 (1998) no. 1, pp. 303-306
[15] High rate etching of sapphire wafer using Cl2/BCl3/Ar inductively coupled plasmas, Mater. Sci. Eng. B, Volume 82 (2001) no. 1–3, pp. 50-52
[16] Refractive sapphire microlenses fabricated by chlorine-based inductively coupled plasma etching, Appl. Opt., Volume 40 (2001) no. 22, pp. 3698-3702
[17] Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching, Appl. Phys. A, Volume 76 (2003) no. 7, pp. 1109-1112
[18] Ion implantation and annealing of crystalline oxides, Mater. Sci. Rep., Volume 4 (1989) no. 2, pp. 41-146
[19] Etching of amorphous Al2O3 produced by ion implantation, Nucl. Instrum. Methods B, Volume 127–128 (1997), pp. 596-598
[20] Fabrication of step-edge structures on R-plane sapphire using a selective wet etch process, Nuovo Cimento D, Volume 19 (1997) no. 8–9, pp. 1389-1395
[21] Enhanced etching of sapphire damaged by ion implantation, J. Phys. D: Appl. Phys., Volume 31 (1998) no. 14, pp. 1647-1651
[22] Optical Effects of Ion Implantation (P.L. Knight; A. Miller, eds.), Cambridge Univ. Press, Cambridge, 1994
[23] Ion implantation of optical materials, Annu. Rev. Mater. Sci., Volume 24 (1994), pp. 125-157
[24] A new etching method for single-crystal Al2O3 film on Si using Si ion implantation, Sensor Actuat. A-Phys., Volume 53 (1996) no. 1–3, pp. 340-344
[25] Reaction of ortho-phosphoric acid with several forms of aluminum-oxide, Ceram. Bull., Volume 59 (1980) no. 7, p. 727
[26] Micromachining of fine ceramics by photolithography, Sensor Actuat. A-Phys., Volume 75 (1999) no. 3, pp. 278-288
[27] Active waveguide devices by Ag–Na ion exchange on erbium–ytterbium doped phosphate glasses, J. Non-Cryst. Solids, Volume 322 (2003) no. 1–3, pp. 256-261
[28] Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass, Appl. Phys. Lett., Volume 81 (2002) no. 19, pp. 3522-3524
[29] Writing waveguides in glass with a femtosecond laser, Opt. Lett., Volume 21 (1996) no. 21, pp. 1729-1731
[30] Fabrication of buried channel waveguides in fused silica using focused MeV proton beam irradiation, J. Lightwave Technol., Volume 14 (1996) no. 11, pp. 2554-2557
[31] Erbium-doped waveguide amplifiers fabricated using focused proton beam writing, Appl. Phys. Lett., Volume 84 (2004) no. 5, pp. 684-686
[32] Metal-diffused optical waveguides in LiNbO3, Appl. Phys. Lett., Volume 25 (1974) no. 8, pp. 458-460
[33] Titanium diffused waveguides in sapphire, Electron. Lett., Volume 32 (1996) no. 24, pp. 2238-2239
[34] Photorefractive waveguides in oxide crystals: fabrication, properties, and applications, Appl. Phys. B, Volume 67 (1998) no. 2, pp. 131-150
[35] Progress in optical waveguiding thin films, Czech. J. Phys., Volume 53 (2003) no. 5, pp. 365-377
[36] Hydrogen in lithium niobate, Adv. Phys., Volume 45 (1996) no. 5, pp. 349-392
[37] Characteristics of pyrophosphoric acid proton-exchanged waveguides in LiNbO3, J. Appl. Phys., Volume 70 (1991) no. 11, pp. 6663-6668
[38] Characterization of sulfuric acid proton-exchanged lithium niobate, J. Appl. Phys., Volume 67 (1990) no. 2, pp. 627-633
[39] Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation, Opt. Lett., Volume 13 (1988) no. 11, pp. 1050-1052
[40] Damaged-resistant LiNbO3 waveguides, J. Appl. Phys., Volume 55 (1984) no. 1, pp. 269-270
[41] Designable buried waveguides in sapphire by proton implantation, Appl. Phys. Lett., Volume 85 (2004) no. 22, pp. 5167-5169
[42] Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides, J. Appl. Phys., Volume 87 (2000) no. 7, pp. 3199-3202
[43] Nonleaky optical waveguides in KNbO3 by ultralow dose MeV He ion implantation, Appl. Phys. Lett., Volume 59 (1991) no. 26, pp. 3354-3356
[44] Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals, Opt. Mater., Volume 24 (2003) no. 1–2, pp. 315-319
[45] Optical waveguides formed by ion implantation in Al2O3 and CaCO3 (P. Mazzoldi, ed.), Induced Defects in Insulators, MRS, vol. 207, Les Editions de Physique, Les Ulis, 1985, p. 207
[46] C.N. Borca, F. Zäh, C. Schnider, R.P. Salathé, M. Pollnau, P. Moretti, Fabrication of optical planar waveguides in KY(WO4)2 by He-ion implantation, in: Conference on Lasers and Electro-Optics Europe, Munich, Germany, 2005, Conference Digest, paper CE6-3-FRI
[47] Ultrafast-laser driven micro-explosions in transparent materials, Appl. Phys. Lett., Volume 71 (1997) no. 7, pp. 882-884
[48] Femtosecond writing of active optical waveguides with astigmatically shaped beams, J. Opt. Soc. Am. B, Volume 20 (2003) no. 7, pp. 1559-1567
[49] Transmission electron microscopy studies of femtosecond laser induced modifications in quartz, Appl. Phys. A, Volume 76 (2003) no. 3, pp. 309-311
[50] Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire, Appl. Phys. Lett., Volume 85 (2004) no. 7, pp. 1122-1124
[51] Diffused Ti:sapphire channel-waveguide lasers, J. Opt. Soc. Am. B, Volume 21 (2004) no. 8, pp. 1452-1456
[52] Single-transverse-mode Ti:sapphire rib waveguide laser, Opt. Express, Volume 13 (2005) no. 1, pp. 210-215
[53] Ti:sapphire buried channel waveguide laser by proton implantation, Conference on Lasers and Electro-Optics, Long Beach, California, 2006, Technical Digest, Optical Society of America, Washington, DC, 2006 (paper JWB47)
[54] Neodymium-doped tantalum pentoxide waveguide lasers, IEEE J. Quantum Electron., Volume 41 (2005) no. 12, pp. 1565-1573
[55] Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing, Opt. Lett., Volume 30 (2005) no. 17, pp. 2248-2250
[56] Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser, IEEE J. Quantum Electron., Volume 39 (2003) no. 3, pp. 493-500
[57] High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars, Opt. Lett., Volume 27 (2002) no. 7, pp. 524-526
[58] Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 μm) planar waveguide grown by pulsed laser deposition, Opt. Commun., Volume 229 (2004) no. 1–6, pp. 355-361
[59] Yb-doped KY(WO4)2 planar waveguide laser, Opt. Lett., Volume 31 (2006) no. 1, pp. 53-55
[60] Continuous-wave laser operation at 1.3 μm in Nd3+-doped Zn:LiNbO3 channel waveguides, Appl. Phys. Lett., Volume 84 (2004) no. 17, pp. 3271-3273
[61] Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides, Appl. Phys. Lett., Volume 86 (2005) no. 16, p. 161119
[62] Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide, Appl. Phys. Lett., Volume 82 (2003) no. 10, pp. 1515-1517
[63] Yb-diffused LiNbO3 annealed/proton exchanged waveguide lasers, IEEE Photon. Technol. Lett., Volume 17 (2005) no. 1, pp. 130-132
[64] Spectroscopic and laser characteristics of Ti:Al2O3, J. Opt. Soc. Am. B, Volume 3 (1986) no. 1, pp. 125-133
[65] Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser, Opt. Lett., Volume 24 (1999) no. 6, pp. 411-413
[66] Broadband luminescent materials in waveguide geometry, J. Lumin., Volume 102–103 (2003), pp. 797-801
[67] Ultrahigh resolution optical coherence tomography using a superluminescent light source, Opt. Express, Volume 10 (2002) no. 7, pp. 349-353
[68] Excimer laser ablation and film deposition of Ti:sapphire, Appl. Surf. Sci., Volume 96–98 (1996), pp. 849-854
[69] Growth of Ti:sapphire single crystal thin films by pulsed laser deposition, Thin Solid Films, Volume 300 (1997) no. 1–2, pp. 68-71
[70] Production and characterization of Ti:sapphire thin films grown by reactive laser ablation with elemental precursors, Opt. Lett., Volume 24 (1999) no. 22, pp. 1581-1583
[71] Chemically stabilised ion implanted waveguides in sapphire, Electron. Lett., Volume 26 (1990) no. 15, pp. 1193-1195
[72] Formation of Ti3+ in sapphire by co-implantation of Ti and O ions, Appl. Phys. Lett., Volume 76 (2000) no. 4, pp. 424-426
[73] Ti:sapphire planar waveguide laser grown by pulsed laser deposition, Opt. Lett., Volume 22 (1997) no. 20, pp. 1556-1558
[74] Continuous-wave broadband emitter based on a transition-metal-ion-doped waveguide, Opt. Lett., Volume 26 (2001) no. 5, pp. 283-285
[75] Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse mode broadband fluorescence sources, IEEE J. Quantum Electron., Volume 39 (2003) no. 3, pp. 501-507
[76] Gallium-diffused waveguides in sapphire, Opt. Lett., Volume 26 (2001) no. 20, pp. 1586-1588
[77] Strain-induced channel waveguiding in bulk sapphire substrates, Appl. Phys. Lett., Volume 79 (2001) no. 17, pp. 2693-2695
[78] Interaction of UV laser light with wide band gap materials: Mechanisms and effects, Nucl. Instrum. Methods B, Volume 141 (1998) no. 1–4, pp. 709-718
[79] In vivo ultrahigh-resolution optical coherence tomography, Opt. Lett., Volume 24 (1999) no. 17, pp. 1221-1223
[80] Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition, Appl. Phys. Lett., Volume 69 (1996) no. 1, pp. 10-12
[81] Performance of a low-loss pulsed-laser-deposited Nd:Gd3Ga5O12 waveguide laser at 1.06 and 0.94 μm, Opt. Lett., Volume 22 (1997) no. 13, pp. 988-990
[82] Ion-implanted Nd:YAP planar waveguide laser, Electron. Lett., Volume 26 (1990) no. 21, pp. 1826-1827
[83] Growth of active Nd-doped YAP thin-film waveguides by laser ablation, Appl. Phys. A, Volume 66 (1998) no. 5, pp. 583-586
[84] S. Rivier, U. Griebner, V. Petrov, Y.E. Romanyuk, C.N. Borca, M. Pollnau, KYb(WO4)2:Tm3+ planar waveguide laser', 2006, submitted for publication
[85] Optical channel waveguides in KY(WO4)2:Yb3+, Conference on Lasers and Electro-Optics, Long Beach, California, 2006, Technical Digest, Optical Society of America, Washington, DC, 2006 (paper CMFF3)
[86] Erbium-doped lithium niobate waveguide lasers, IEICE Trans. Electron. E88-C (5) (2005), pp. 990-997
[87] Advanced Ti:Er:LiNbO3 waveguide lasers, IEEE J. Select. Topics Quantum Electron., Volume 6 (2000) no. 1, pp. 101-113
Cité par Sources :
Commentaires - Politique