Comptes Rendus
Optical waveguides in laser crystals
[Guides d'ondes optiques en cristaux laser]
Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 123-137.

Cet article fait le point sur les recherches récentes sur différents types de guides d'ondes optiques cristallins plans et canaux, ainsi que sur leurs méthodes de fabrication, comme l'épitaxie en phase liquide, la déposition par laser pulsé, le thermocollage, l'attaque par ions réactifs ou faisceau ionique, l'attaque chimique humide, la diffusion ionique, l'échange de protons, l'implantation par faisceau ionique, et la gravure par laser femtoseconde, ou encore le dopage laser de guides d'ondes par des ions de terres rares et de métaux de transition dans des oxydes cristallins tels que Al2O3, Y3Al5O12, YAlO3, KY(WO4)2 et LiNbO3.

This article reviews the recent research on different types of planar and channel crystalline optical waveguides, fabrication methods such as liquid phase epitaxy, pulsed laser deposition, thermal bonding, reactive ion or ion beam etching, wet chemical etching, ion in-diffusion, proton exchange, ion beam implantation, and femtosecond laser writing, as well as waveguide laser operation of rare-earth and transition-metal ions in oxide crystalline materials such as Al2O3, Y3Al5O12, YAlO3, KY(WO4)2, and LiNbO3.

Publié le :
DOI : 10.1016/j.crhy.2006.04.002
Keywords: Optical waveguides, Laser crystals
Mot clés : Guides d'ondes optiques, Cristaux laser
Markus Pollnau 1, 2 ; Yaroslav E. Romanyuk 1

1 Advanced Photonics Laboratory, Institute of Imaging and Applied Optics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
2 MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands
@article{CRPHYS_2007__8_2_123_0,
     author = {Markus Pollnau and Yaroslav E. Romanyuk},
     title = {Optical waveguides in laser crystals},
     journal = {Comptes Rendus. Physique},
     pages = {123--137},
     publisher = {Elsevier},
     volume = {8},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crhy.2006.04.002},
     language = {en},
}
TY  - JOUR
AU  - Markus Pollnau
AU  - Yaroslav E. Romanyuk
TI  - Optical waveguides in laser crystals
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 123
EP  - 137
VL  - 8
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.04.002
LA  - en
ID  - CRPHYS_2007__8_2_123_0
ER  - 
%0 Journal Article
%A Markus Pollnau
%A Yaroslav E. Romanyuk
%T Optical waveguides in laser crystals
%J Comptes Rendus. Physique
%D 2007
%P 123-137
%V 8
%N 2
%I Elsevier
%R 10.1016/j.crhy.2006.04.002
%G en
%F CRPHYS_2007__8_2_123_0
Markus Pollnau; Yaroslav E. Romanyuk. Optical waveguides in laser crystals. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 123-137. doi : 10.1016/j.crhy.2006.04.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.04.002/

[1] B. Ferrand; B. Chambaz; M. Couchaud Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media, Opt. Mater., Volume 11 (1999), pp. 101-114

[2] H. Nelson Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes, RCA Rev., Volume 24 (1963) no. 4, pp. 603-615

[3] P.K. Tien; R.J. Martin; S.L. Blank; S.H. Wemple; L.J. Varnerin Optical waveguides in single-crystal garnet films, Appl. Phys. Lett., Volume 21 (1972) no. 5, pp. 207-209

[4] D. Ehrentraut; M. Pollnau; S. Kück Epitaxial growth and spectroscopic investigation of BaSO4:Mn6+ layers, Appl. Phys. B, Volume 75 (2002) no. 1, pp. 59-62

[5] Y.E. Romanyuk; I. Utke; D. Ehrentraut; V. Apostolopoulos; M. Pollnau; S. García-Revilla; R. Valiente Low-temperature liquid phase epitaxy and optical waveguiding of rare-earth-ion doped KY(WO4)2 thin layers, J. Cryst. Growth, Volume 269 (2004) no. 2–4, pp. 377-384

[6] Y.E. Romanyuk, Liquid-phase epitaxy of doped KY(WO4)2 layers for waveguide lasers, Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2005

[7] I. Chartier; B. Ferrand; D. Pelenc; S.J. Field; D.C. Hanna; A.C. Large; D.P. Shepherd; D.C. Tropper Growth and low-threshold laser oscillation of an epitaxially grown Nd:YAG waveguide, Opt. Lett., Volume 17 (1992) no. 11, pp. 10-12

[8] P.A. Atanasov; R.I. Tomov; J. Perriére; R.W. Eason; N. Vainos; A. Klini; A. Zherikhin; E. Millon Growth of Nd:potassium gadolinium tungstate thin-film waveguides by pulsed laser deposition, Appl. Phys. Lett., Volume 76 (2000) no. 18, pp. 2490-2492

[9] M. Jelinek; J. Lancok; J. Sonsky; J. Oswald; M. Simeckova; L. Jastrabik; V. Studnicka Planar waveguide lasers and structures created by laser ablation—an overview, Czech. J. Phys., Volume 48 (1998) no. 5, pp. 577-597

[10] C.T.A. Brown; C.L. Bonner; T.J. Warburton; D.P. Shepherd; A.C. Tropper; D.C. Hanna; H.E. Meissner Thermally bonded planar waveguide lasers, Appl. Phys. Lett., Volume 71 (1997) no. 9, pp. 1139-1141

[11] U. Griebner; R. Grunwald; H. Schönnagel Thermally bonded Yb:YAG planar waveguide laser, Opt. Commun., Volume 164 (1999) no. 4–6, pp. 185-190

[12] A. Crunteanu; P. Hoffmann; M. Pollnau; Ch. Buchal A comparative study on methods to structure sapphire, Appl. Surf. Sci., Volume 208–209 (2003), pp. 322-326

[13] A. Crunteanu; M. Pollnau; G. Jänchen; C. Hibert; P. Hoffmann; R.P. Salathé; R.W. Eason; C. Grivas; D.P. Shepherd Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide, Appl. Phys. B, Volume 75 (2002) no. 1, pp. 15-17

[14] J. Lančok; M. Jelínek; J. Bulíř; P. Macháč Study of the fabrication of the channel waveguide in Ti:sapphire layers, Laser Phys., Volume 8 (1998) no. 1, pp. 303-306

[15] Y.J. Sung; H.S. Kim; Y.H. Lee; J.W. Lee; S.H. Chae; Y.J. Park; G.Y. Yeom High rate etching of sapphire wafer using Cl2/BCl3/Ar inductively coupled plasmas, Mater. Sci. Eng. B, Volume 82 (2001) no. 1–3, pp. 50-52

[16] S.H. Park; H. Jeon; Y.J. Sung; G.Y. Yeom Refractive sapphire microlenses fabricated by chlorine-based inductively coupled plasma etching, Appl. Opt., Volume 40 (2001) no. 22, pp. 3698-3702

[17] A. Crunteanu; G. Jänchen; P. Hoffmann; M. Pollnau; Ch. Buchal; A. Petraru; R.W. Eason; D.P. Shepherd Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching, Appl. Phys. A, Volume 76 (2003) no. 7, pp. 1109-1112

[18] C.W. White; C.J. McHargue; P.S. Skland; L.A. Boatner; G.C. Farlow Ion implantation and annealing of crystalline oxides, Mater. Sci. Rep., Volume 4 (1989) no. 2, pp. 41-146

[19] C.J. McHargue; J.D. Hunn; D.L. Joslin; E. Alves; M.F. da Silva; J.C. Soares Etching of amorphous Al2O3 produced by ion implantation, Nucl. Instrum. Methods B, Volume 127–128 (1997), pp. 596-598

[20] P. Levy; S. Nicoletti; L. Correra; M. Cervera; M. Bianconi; F. Biscarini; F. Corticelli; E. Gabilli Fabrication of step-edge structures on R-plane sapphire using a selective wet etch process, Nuovo Cimento D, Volume 19 (1997) no. 8–9, pp. 1389-1395

[21] D. Xie; D. Zhu; H. Pan; H. Xu; Z. Ren Enhanced etching of sapphire damaged by ion implantation, J. Phys. D: Appl. Phys., Volume 31 (1998) no. 14, pp. 1647-1651

[22] P.D. Townsend; P.J. Chandler; L. Zhang Optical Effects of Ion Implantation (P.L. Knight; A. Miller, eds.), Cambridge Univ. Press, Cambridge, 1994

[23] Ch. Buchal; S.P. Withrow; C.W. White; D.B. Poker Ion implantation of optical materials, Annu. Rev. Mater. Sci., Volume 24 (1994), pp. 125-157

[24] M. Ishida; H. Kim; T. Kimura; T. Nakamura A new etching method for single-crystal Al2O3 film on Si using Si ion implantation, Sensor Actuat. A-Phys., Volume 53 (1996) no. 1–3, pp. 340-344

[25] F. Gonzalez; J.W. Halloran Reaction of ortho-phosphoric acid with several forms of aluminum-oxide, Ceram. Bull., Volume 59 (1980) no. 7, p. 727

[26] E. Makino; T. Shibata; Y. Yamada Micromachining of fine ceramics by photolithography, Sensor Actuat. A-Phys., Volume 75 (1999) no. 3, pp. 278-288

[27] G. Jose; G. Sorbello; S. Taccheo; E. Cianci; V. Foglietti; P. Laporta Active waveguide devices by Ag–Na ion exchange on erbium–ytterbium doped phosphate glasses, J. Non-Cryst. Solids, Volume 322 (2003) no. 1–3, pp. 256-261

[28] C.B.E. Gawith; A. Fu; T. Bhutta; P. Hua; D.P. Shepherd; E.R. Taylor; P.G.R. Smith; D. Milanese; M. Ferrarris Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass, Appl. Phys. Lett., Volume 81 (2002) no. 19, pp. 3522-3524

[29] K.M. Davies; K. Miura; N. Sugimoto; K. Hirao Writing waveguides in glass with a femtosecond laser, Opt. Lett., Volume 21 (1996) no. 21, pp. 1729-1731

[30] A. Roberts; M.L. von Bibra Fabrication of buried channel waveguides in fused silica using focused MeV proton beam irradiation, J. Lightwave Technol., Volume 14 (1996) no. 11, pp. 2554-2557

[31] K. Liu; E.Y.B. Pun; T.C. Sum; A.A. Bettiol; J.A. van Kan; F. Watt Erbium-doped waveguide amplifiers fabricated using focused proton beam writing, Appl. Phys. Lett., Volume 84 (2004) no. 5, pp. 684-686

[32] R.V. Schmidt; I.P. Kaminow Metal-diffused optical waveguides in LiNbO3, Appl. Phys. Lett., Volume 25 (1974) no. 8, pp. 458-460

[33] L.M.B. Hickey; J.S. Wilkinson Titanium diffused waveguides in sapphire, Electron. Lett., Volume 32 (1996) no. 24, pp. 2238-2239

[34] D. Kip Photorefractive waveguides in oxide crystals: fabrication, properties, and applications, Appl. Phys. B, Volume 67 (1998) no. 2, pp. 131-150

[35] M. Jelinek Progress in optical waveguiding thin films, Czech. J. Phys., Volume 53 (2003) no. 5, pp. 365-377

[36] J.M. Cabrera; J. Olivares; M. Carrascosa; J. Rams; R. Müller; E. Dieguez Hydrogen in lithium niobate, Adv. Phys., Volume 45 (1996) no. 5, pp. 349-392

[37] K. Yamamoto; T. Taniuchi Characteristics of pyrophosphoric acid proton-exchanged waveguides in LiNbO3, J. Appl. Phys., Volume 70 (1991) no. 11, pp. 6663-6668

[38] J.T. Cargo; A.J. Filo; M.C. Hughes; V.C. Kannan; F.A. Stevie; J.A. Taylor; J.R. Holmes Characterization of sulfuric acid proton-exchanged lithium niobate, J. Appl. Phys., Volume 67 (1990) no. 2, pp. 627-633

[39] P.G. Suchoski; T.K. Findakly; F.J. Leonberger Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation, Opt. Lett., Volume 13 (1988) no. 11, pp. 1050-1052

[40] J. Jackel; A.M. Glass; G.E. Peterson; C.E. Rice; D.H. Olson; J.J. Veselka Damaged-resistant LiNbO3 waveguides, J. Appl. Phys., Volume 55 (1984) no. 1, pp. 269-270

[41] L. Laversenne; P. Hoffmann; M. Pollnau; P. Moretti; J. Mugnier Designable buried waveguides in sapphire by proton implantation, Appl. Phys. Lett., Volume 85 (2004) no. 22, pp. 5167-5169

[42] J. Rams; J. Olivares; P.J. Chandler; P.D. Townsend Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides, J. Appl. Phys., Volume 87 (2000) no. 7, pp. 3199-3202

[43] F.P. Strohkendl; D. Fluck; P. Günter; R. Irmscher; Ch. Buchal Nonleaky optical waveguides in KNbO3 by ultralow dose MeV He ion implantation, Appl. Phys. Lett., Volume 59 (1991) no. 26, pp. 3354-3356

[44] P. Moretti; M.F. Joubert; S. Tascu; B. Jacquier; M. Kaczkan; M. Malinowskii; J. Samecki Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals, Opt. Mater., Volume 24 (2003) no. 1–2, pp. 315-319

[45] P.D. Townsend Optical waveguides formed by ion implantation in Al2O3 and CaCO3 (P. Mazzoldi, ed.), Induced Defects in Insulators, MRS, vol. 207, Les Editions de Physique, Les Ulis, 1985, p. 207

[46] C.N. Borca, F. Zäh, C. Schnider, R.P. Salathé, M. Pollnau, P. Moretti, Fabrication of optical planar waveguides in KY(WO4)2 by He-ion implantation, in: Conference on Lasers and Electro-Optics Europe, Munich, Germany, 2005, Conference Digest, paper CE6-3-FRI

[47] E.N. Glezer; E. Mazur Ultrafast-laser driven micro-explosions in transparent materials, Appl. Phys. Lett., Volume 71 (1997) no. 7, pp. 882-884

[48] R. Osellame; S. Taccheo; M. Marangoni; R. Ramponi; P. Laporta; D. Polli; S. De Silvestri; G. Cerullo Femtosecond writing of active optical waveguides with astigmatically shaped beams, J. Opt. Soc. Am. B, Volume 20 (2003) no. 7, pp. 1559-1567

[49] T. Gorelik; M. Will; S. Nolte; A. Tünnermann; U. Glatzel Transmission electron microscopy studies of femtosecond laser induced modifications in quartz, Appl. Phys. A, Volume 76 (2003) no. 3, pp. 309-311

[50] V. Apostolopoulos; L. Laversenne; T. Colomb; C. Depeursinge; R.P. Salathé; M. Pollnau; R. Osellame; G. Cerullo; P. Laporta Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire, Appl. Phys. Lett., Volume 85 (2004) no. 7, pp. 1122-1124

[51] L.M.B. Hickey; V. Apostolopoulos; R.W. Eason; J.S. Wilkinson; A.A. Anderson Diffused Ti:sapphire channel-waveguide lasers, J. Opt. Soc. Am. B, Volume 21 (2004) no. 8, pp. 1452-1456

[52] C. Grivas; D.P. Shepherd; T.C. May-Smith; R.W. Eason; M. Pollnau Single-transverse-mode Ti:sapphire rib waveguide laser, Opt. Express, Volume 13 (2005) no. 1, pp. 210-215

[53] L. Laversenne; C.N. Borca; M. Pollnau; P. Moretti; C. Grivas; D.P. Shepherd; R.W. Eason Ti:sapphire buried channel waveguide laser by proton implantation, Conference on Lasers and Electro-Optics, Long Beach, California, 2006, Technical Digest, Optical Society of America, Washington, DC, 2006 (paper JWB47)

[54] B. Unal; M.C. Netti; M.A. Hassan; P.J. Ayliffe; M.D.B. Charlton; F. Lahoz; N.M.B. Perney; D.P. Shepherd; C.Y. Tai; J.S. Wilkinson; G.J. Parker Neodymium-doped tantalum pentoxide waveguide lasers, IEEE J. Quantum Electron., Volume 41 (2005) no. 12, pp. 1565-1573

[55] A.G. Okhrimchuk; A.V. Shestakov; I. Khrushchev; J. Mitchell Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing, Opt. Lett., Volume 30 (2005) no. 17, pp. 2248-2250

[56] J.I. Mackenzie; C. Li; D.P. Shepherd Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser, IEEE J. Quantum Electron., Volume 39 (2003) no. 3, pp. 493-500

[57] J.R. Lee; H.J. Baker; G.J. Friel; G.J. Hilton; D.R. Hall High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars, Opt. Lett., Volume 27 (2002) no. 7, pp. 524-526

[58] C. Grivas; T.C. May-Smith; D.P. Shepherd; R.W. Eason Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 μm) planar waveguide grown by pulsed laser deposition, Opt. Commun., Volume 229 (2004) no. 1–6, pp. 355-361

[59] Y.E. Romanyuk; C.N. Borca; M. Pollnau; U. Griebner; S. Rivier; V. Petrov Yb-doped KY(WO4)2 planar waveguide laser, Opt. Lett., Volume 31 (2006) no. 1, pp. 53-55

[60] M. Domenech; G. Lifante Continuous-wave laser operation at 1.3 μm in Nd3+-doped Zn:LiNbO3 channel waveguides, Appl. Phys. Lett., Volume 84 (2004) no. 17, pp. 3271-3273

[61] E. Cantelar; J.A. Sanz-Garcia; G. Lifante; F. Cusso; P.L. Pernas Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides, Appl. Phys. Lett., Volume 86 (2005) no. 16, p. 161119

[62] B.K. Das; R. Ricken; W. Sohler Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide, Appl. Phys. Lett., Volume 82 (2003) no. 10, pp. 1515-1517

[63] M. Fujimura; H. Tsuchimoto; T. Suhara Yb-diffused LiNbO3 annealed/proton exchanged waveguide lasers, IEEE Photon. Technol. Lett., Volume 17 (2005) no. 1, pp. 130-132

[64] P.F. Moulton Spectroscopic and laser characteristics of Ti:Al2O3, J. Opt. Soc. Am. B, Volume 3 (1986) no. 1, pp. 125-133

[65] U. Morgner; F.X. Kärtner; S.H. Cho; Y. Chen; H.A. Haus; J.G. Fujimoto; E.P. Ippen; V. Scheuer; G. Angelow; T. Tschudi Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser, Opt. Lett., Volume 24 (1999) no. 6, pp. 411-413

[66] M. Pollnau Broadband luminescent materials in waveguide geometry, J. Lumin., Volume 102–103 (2003), pp. 797-801

[67] A.M. Kowalevicz; T. Ko; I. Hartl; J.G. Fujimoto; M. Pollnau; R.P. Salathé Ultrahigh resolution optical coherence tomography using a superluminescent light source, Opt. Express, Volume 10 (2002) no. 7, pp. 349-353

[68] P.E. Dyer; S.R. Jackson; P.H. Key; W.J. Metheringham; M.J.J. Schmidt Excimer laser ablation and film deposition of Ti:sapphire, Appl. Surf. Sci., Volume 96–98 (1996), pp. 849-854

[69] A.A. Anderson; R.W. Eason; M. Jelinek; C. Grivas; D. Lane; K. Rogers; L.M.B. Hickey; C. Fotakis Growth of Ti:sapphire single crystal thin films by pulsed laser deposition, Thin Solid Films, Volume 300 (1997) no. 1–2, pp. 68-71

[70] P.R. Willmott; P. Manoravi; J.R. Huber; T. Greber; T.A. Murray; K. Holliday Production and characterization of Ti:sapphire thin films grown by reactive laser ablation with elemental precursors, Opt. Lett., Volume 24 (1999) no. 22, pp. 1581-1583

[71] P.D. Townsend; P.J. Chandler; R.A. Wood; L. Zhang; J. McCallum; C.W. McHargue Chemically stabilised ion implanted waveguides in sapphire, Electron. Lett., Volume 26 (1990) no. 15, pp. 1193-1195

[72] L.D. Morpeth; J.C. McCallum Formation of Ti3+ in sapphire by co-implantation of Ti and O ions, Appl. Phys. Lett., Volume 76 (2000) no. 4, pp. 424-426

[73] A.A. Anderson; R.W. Eason; L.M.B. Hickey; M. Jelinek; C. Grivas; D.S. Gill; N.A. Vainos Ti:sapphire planar waveguide laser grown by pulsed laser deposition, Opt. Lett., Volume 22 (1997) no. 20, pp. 1556-1558

[74] M. Pollnau; R.P. Salathé; T. Bhutta; D.P. Shepherd; R.W. Eason Continuous-wave broadband emitter based on a transition-metal-ion-doped waveguide, Opt. Lett., Volume 26 (2001) no. 5, pp. 283-285

[75] C. Grivas; D.P. Shepherd; T.C. May-Smith; R.W. Eason; M. Pollnau; A. Crunteanu; M. Jelinek Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse mode broadband fluorescence sources, IEEE J. Quantum Electron., Volume 39 (2003) no. 3, pp. 501-507

[76] V. Apostolopoulos; L.M.B. Hickey; D.A. Sager; J.S. Wilkinson Gallium-diffused waveguides in sapphire, Opt. Lett., Volume 26 (2001) no. 20, pp. 1586-1588

[77] M. Liu; H.K. Kim Strain-induced channel waveguiding in bulk sapphire substrates, Appl. Phys. Lett., Volume 79 (2001) no. 17, pp. 2693-2695

[78] A.J. Pedraza Interaction of UV laser light with wide band gap materials: Mechanisms and effects, Nucl. Instrum. Methods B, Volume 141 (1998) no. 1–4, pp. 709-718

[79] W. Drexler; U. Morgner; F.X. Kärtner; C. Pitris; S.A. Boppart; X.D. Li; E.P. Ippen; J.G. Fujimoto In vivo ultrahigh-resolution optical coherence tomography, Opt. Lett., Volume 24 (1999) no. 17, pp. 1221-1223

[80] D.S. Gill; A.A. Anderson; R.W. Eason; T.J. Warburton; D.P. Shepherd Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition, Appl. Phys. Lett., Volume 69 (1996) no. 1, pp. 10-12

[81] C.L. Bonner; A.A. Anderson; R.W. Eason; D.P. Shepard; D.S. Gill; C. Grivas; N.A. Vainos Performance of a low-loss pulsed-laser-deposited Nd:Gd3Ga5O12 waveguide laser at 1.06 and 0.94 μm, Opt. Lett., Volume 22 (1997) no. 13, pp. 988-990

[82] S.J. Field; D.C. Hanna; D.P. Shepherd; A.C. Tropper; P.J. Chandler; P.D. Townsend; L. Zhang Ion-implanted Nd:YAP planar waveguide laser, Electron. Lett., Volume 26 (1990) no. 21, pp. 1826-1827

[83] J. Sonsky; J. Lancok; M. Jelınek; J. Oswald; V. Studnicka Growth of active Nd-doped YAP thin-film waveguides by laser ablation, Appl. Phys. A, Volume 66 (1998) no. 5, pp. 583-586

[84] S. Rivier, U. Griebner, V. Petrov, Y.E. Romanyuk, C.N. Borca, M. Pollnau, KYb(WO4)2:Tm3+ planar waveguide laser', 2006, submitted for publication

[85] C.N. Borca; Y.E. Romanyuk; F. Gardillou; M. Pollnau; M.P. Bernal; P. Moretti Optical channel waveguides in KY(WO4)2:Yb3+, Conference on Lasers and Electro-Optics, Long Beach, California, 2006, Technical Digest, Optical Society of America, Washington, DC, 2006 (paper CMFF3)

[86] W. Sohler; B.K. Das; D. Dey; S. Reza; H. Suche; R. Ricken Erbium-doped lithium niobate waveguide lasers, IEICE Trans. Electron. E88-C (5) (2005), pp. 990-997

[87] C. Becker; T. Oesselke; J. Pandavenes; R. Ricken; K. Rochhausen; G. Schreiber; W. Sohler; H. Suche; R. Wessel; S. Balsamo; I. Montrosset; D. Sciancalepore Advanced Ti:Er:LiNbO3 waveguide lasers, IEEE J. Select. Topics Quantum Electron., Volume 6 (2000) no. 1, pp. 101-113

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Quasi-phasematching

David S. Hum; Martin M. Fejer

C. R. Phys (2007)


Parametric fluorescence in semiconductor waveguides

Marco Ravaro; Loïc Lanco; X. Marcadet; ...

C. R. Phys (2007)


Advancements in passive planar lightwave circuits and hybrid integration devices

James R. Bonar; Russell Childs; Richard I. Laming

C. R. Phys (2003)