[Composants à base de polymères électro-optiques pour les télécommunications optiques]
Les composants à base de polymères pour l'optique intégrée sont particulièrement intéressants pour les systèmes de télécommunications en particulier par leur procédé de fabrication simplifié et à bas coût. Leur grande bande passante résulte en partie de leur faible constante diélectrique ainsi que d'une dispersion très réduite depuis les signaux continus jusqu'aux fréquences optiques. Nous détaillons tout d'abord les étapes de modélisation concernant de façon conjointe les aspects optiques et électriques. Le procédé de fabrication de ces composants est exposé dans une seconde partie. Enfin, des résultats originaux seront présentés concernant un modulateur insensible à la polarisation, un commutateur intégrant une jonction en X asymétrique ainsi qu'un convertisseur optique hyperfréquence utilisant les propriétés non linéaires de génération de différence de fréquences.
Electro-optic polymer waveguide devices are very attractive for optical communication systems, because of their potentially simple and low-cost fabrication procedure. High bandwidth devices are enabled by the low dielectric constant of polymers with negligible dispersion from DC to optical frequencies. We first detail the modelization steps relating to the optical and electrical aspects of devices. We then outline the different steps of the fabrication process of electro-optic polymer based devices. By way of illustrating these considerations, we present some original realizations namely polarization insensitive modulators, switching devices using an asymetric X coupler and optic to RF converters based on difference frequency mixing.
Publié le :
Mot clés : polymères électro-optiques, optique intégrée, composants, télécommunications optiques
Patrick Labbé 1, 2 ; Ariela Donval 1 ; R. Hierle 1 ; Eric Toussaere 1 ; Joseph Zyss 1
@article{CRPHYS_2002__3_4_543_0, author = {Patrick Labb\'e and Ariela Donval and R. Hierle and Eric Toussaere and Joseph Zyss}, title = {Electro-optic polymer based devices and technology for optical telecommunication}, journal = {Comptes Rendus. Physique}, pages = {543--554}, publisher = {Elsevier}, volume = {3}, number = {4}, year = {2002}, doi = {10.1016/S1631-0705(02)01334-8}, language = {en}, }
TY - JOUR AU - Patrick Labbé AU - Ariela Donval AU - R. Hierle AU - Eric Toussaere AU - Joseph Zyss TI - Electro-optic polymer based devices and technology for optical telecommunication JO - Comptes Rendus. Physique PY - 2002 SP - 543 EP - 554 VL - 3 IS - 4 PB - Elsevier DO - 10.1016/S1631-0705(02)01334-8 LA - en ID - CRPHYS_2002__3_4_543_0 ER -
%0 Journal Article %A Patrick Labbé %A Ariela Donval %A R. Hierle %A Eric Toussaere %A Joseph Zyss %T Electro-optic polymer based devices and technology for optical telecommunication %J Comptes Rendus. Physique %D 2002 %P 543-554 %V 3 %N 4 %I Elsevier %R 10.1016/S1631-0705(02)01334-8 %G en %F CRPHYS_2002__3_4_543_0
Patrick Labbé; Ariela Donval; R. Hierle; Eric Toussaere; Joseph Zyss. Electro-optic polymer based devices and technology for optical telecommunication. Comptes Rendus. Physique, Volume 3 (2002) no. 4, pp. 543-554. doi : 10.1016/S1631-0705(02)01334-8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01334-8/
[1] Chromatic dispersion in fiber-optic microwave and millimeter wave links, IEEE Trans. Microwave Theory Techn., Volume MTT-40 (1996) no. 10, pp. 1716-1724
[2] et al. 1.28 Tbit/s (32×40 Gbit) WDM transmission over 2400 km of Teralight/sup TM/Reverse Teralight fibres using distributed all Raman amplification, Electron. Lett., Volume 37 (2001) no. 21, pp. 1300-1302
[3] Waveguide electro-optic modulators, IEEE Trans. Microwave Theory Techn., Volume MTT-30 (1982) no. 8, pp. 1121-1137
[4] Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate, J. Lightwave Technol., Volume 16 (1998) no. 6, pp. 1030-1037
[5] Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient, Science, Volume 271 (1996), pp. 335-337
[6] Mode conversion in planar-dielectric separating waveguides, IEEE J. Quantum Electron., Volume QE-11 (1975), pp. 32-39
[7] Advances in organic polymer-based optoelectronics, Polymers for Second-Order Nonlinear Optics, Chapter 32, American Chemical Society, 1995, pp. 437-455
[8] Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds, J. Chem. Phys., Volume 67 (1977) no. 2, pp. 446-457
[9] Dielectric, pyroelectric, and electro-optic monitoring of the cross-linking process and photoinduced poling of Red Acid Magly, Appl. Phys. Lett., Volume 70 (1997), pp. 568-570
[10] Control of the polarization dependence of optically poled nonlinear polymer films, Opt. Lett., Volume 22 (1997) no. 19, pp. 1464-1466
[11] Photoassisted poling azo dye doped polymeric films at room temperature, Appl. Phys. B, Volume 54 (1992) no. 5, pp. 486-489
[12] A general model for optically induced molecular order in amorphousmaterials, via photoisomerisation, Nonlinear Opt., Volume 9 (1995), pp. 327-338
[13] Polymer based optoelectronics: from molecular nonlinear optics to device technology (M. Quillec, ed.), Materials for Optoelectronics, Kluwer, Boston, 1996
[14] Polymeric waveguides for electrooptic applications: material, characterization and device demonstration, Nonlinear Opt., Volume 4 (1993), pp. 233-243
[15] Thermally stable cross-linked polymers for electro-optic applications, J. Phys. III, Volume 4 (1994) no. 12, pp. 2441-2450
[16] Synthesis and characterization of aromatic polyimides bearing nonlinear optical chromophores, High Perform. Polym., Volume 12 (2000), pp. 169-176
[17] Demonstration of 110 GHz electro-optic polymer modulators, Appl. Phys. Lett., Volume 70 (1997) no. 25, pp. 3335-3337
[18] Electro-optic polymer modulators with 0.8 V half-wave voltage, Appl. Phys. Lett., Volume 77 (2000) no. 1, pp. 1-3
[19] New polarization insensitive electrooptic polymer amplitude modulator designed for integrated optic, J. Appl. Phys., Volume 87 (2000) no. 7, pp. 3258-3262
[20] Comparative assessment of electrical, photoassisted and all optical in-plane poling of polymer based electrooptic modulators, Opt. Mater. (Amsterdam), Volume 12 (1999) no. 2–3, pp. 215-219
[21] Digital optical switch, Appl. Phys. Lett., Volume 16 (1987) no. 19, pp. 1230-1232
[22] 2×2 GaAs asymetyric Mach–Zehnder interferometer switch, Appl. Phys. Lett., Volume 60 (1992) no. 23, pp. 2843-2845
[23] Asymetric X-junction thermooptic switches based on fluorinated polymer waveguides, IEEE Photon. Technol. Lett., Volume 10 (1998) no. 6, pp. 813-815
[24] Low Vπ electro-optic modulator with a high μβ chromophore and a constant-bias field, Opt. Lett., Volume 23 (1998) no. 6, pp. 478-480
[25] Polymeric 2×2 electro-optic switch consisting of asymetric Y junctions and Mach–Zenhder interferometer, IEEE Photon. Technol. Lett., Volume 9 (1997) no. 6, pp. 761-763
[26] Polymeric electro-optic modulator based on 1×2 Y-fed directional coupler, Appl. Phys. Lett., Volume 76 (2000) no. 15, pp. 1972-1974
[27] A mode-evolution-type integrated-optical beam combiner for coherent receivers, IEEE Photon. Technol. Lett., Volume 3 (1991) no. 4, pp. 339-341
[28] Fabrication of low refractive index low loss fluorinated self-cross linking polymer waveguides for optical devices, Proc. 7th International Plastic Optical Fibres Conference, Berlin, 1998, pp. 316-323
[29] Terahertz beam generation by femtosecond optical pulses in electro-optic materials, Appl. Phys. Lett., Volume 61 (1992) no. 15, pp. 1784-1786
[30] Terahertz optical rectification from a nonlinear organic crystal, Appl. Phys. Lett., Volume 61 (1992) no. 26, pp. 3080-3082
[31] Generation of tunable, CW, microwave radiation in X-band by difference–frequency mixing, Electron. Lett., Volume 30 (1994) no. 7, pp. 595-597
[32] J.-F. Larchanché, PhD thesis, USTL, 2001
Cité par Sources :
Commentaires - Politique