[Études perturbatives du transport turbulent dans des plasmas de fusion]
Une puissante méthode d'investigation du transport dans les plasmas consiste à étudier sa réponse dynamique à une excitation extérieure. Cet article décrit les techniques expérimentales et la théorie de base de l'approche dynamique. Ensuite, les résultats essentiels obtenus sur le transport électronique de la chaleur sont décrits et leur interprétation est discutée sur la base des concepts déduits de la théorie du transport électrostatique turbulent. Finalement, de possibles futures extensions de cette méthode sont suggérées.
One powerful way to investigate transport is to study the dynamic plasma response to externally applied small perturbations. This article describes the experimental techniques and basic theory underlying the perturbative approach. It then reviews the most recent results on electron heat transport and discusses their interpretation based on key concepts from electrostatic turbulence theory. Finally it presents some hints for future extensions of the work.
Mots-clés : Transport turbulent, Méthodes perturbatives, Propagation d'onde de chaleur, Modes électrostatiques, Diffusivité, Convection
Paola Mantica 1 ; François Ryter 2
@article{CRPHYS_2006__7_6_634_0, author = {Paola Mantica and Fran\c{c}ois Ryter}, title = {Perturbative studies of turbulent transport in fusion plasmas}, journal = {Comptes Rendus. Physique}, pages = {634--649}, publisher = {Elsevier}, volume = {7}, number = {6}, year = {2006}, doi = {10.1016/j.crhy.2006.06.004}, language = {en}, }
Paola Mantica; François Ryter. Perturbative studies of turbulent transport in fusion plasmas. Comptes Rendus. Physique, Turbulent transport in fusion magnetised plasmas, Volume 7 (2006) no. 6, pp. 634-649. doi : 10.1016/j.crhy.2006.06.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.06.004/
[1] Plasma Phys. Control. Fusion, 29 (1987), p. 1077
[2] et al. Nucl. Fusion, 43 (2003), p. 1829
[3] et al. Nucl. Fusion, 46 (2006), p. 73
[4] Nucl. Fusion, 39 (1999), p. 1509
[5] et al. Plasma Phys. Control. Fusion, 45 (2003), p. 1815
[6] et al. Nucl. Fusion, 44 (2004), p. 260
[7] M.E. Puiatti, et al., Phys. Plasmas, in press
[8] et al. London, 2004, Europhysics Conference Abstracts, vol. 28G (2004) (P1.144)
[9] et al. Plasma Phys. Control. Fusion, 46 (2004), p. B255
[10] X. Garbet, Introduction to turbulent transport in fusion plasmas, C. R. Physique 7 (2006), this issue
[11] et al. Plasma Phys. Control. Fusion, 32 (1990), p. 983
[12] Plasma Phys. Control. Fusion, 37 (1995), p. 799
[13] Plasma Phys. Control. Fusion, 40 (1998), p. 9
[14] et al. Plasma Phys. Control. Fusion, 43 (2001), p. A323
[15] Phys. Fluids, 31 (1988), p. 1105
[16] et al. Nucl. Fusion, 27 (1987), p. 1843
[17] et al. Phys. Fluids B, 3 (1991), p. 3033
[18] A.G. Peeters, C. Angioni, G. Tardini, Transport modelling, C. R. Physique 7 (2006), this issue
[19] et al. Plasma Phys. Control. Fusion, 43 (2001), p. 1503
[20] et al. Plasma Phys. Control. Fusion, 46 (2004), p. 1351
[21] Phys. Plasmas, 12 (2005), p. 022505
[22] Phys. Rev. Lett., 38 (1977), p. 491
[23] et al. Plasma Phys. Control. Fusion, 44 (2002), p. 2445
[24] et al. Phys. Rev. Lett., 65 (1990), p. 2869
[25] et al. Nucl. Fusion, 43 (2003), p. 1329
[26] et al. Nucl. Fusion, 44 (2004), p. 33
[27] et al. St. Petersburg, 2003, Europhysics Conference Abstracts, vol. 27A (2003) (O-3.1A)
[28] et al. Plasma Phys. Control. Fusion, 44 (2002), p. 2185
[29] et al. Nucl. Fusion, 40 (2000), p. 1917
[30] et al. Nucl. Fusion, 34 (1994), p. 349
[31] et al. Nucl. Fusion, 32 (1992), p. 2203
[32] et al. Nucl. Fusion, 43 (2003), p. 1396
[33] et al. Nucl. Fusion, 45 (2005), p. 494
[34] Plasma Phys. Control. Fusion, 47 (2005), p. 1971
[35] et al. Phys. Rev. Lett., 95 (2005), p. 085001-1
[36] et al. Phys. Plasmas, 12 (2005), p. 040701-1
[37] Collective Modes in Inhomogeneous Plasma, Kinetic and Advanced Fluid Theory, IoP Publishing, Bristol and Philadelphia, 2000
[38] et al. Phys. Rev. Lett., 95 (2005), p. 185002
[39] et al. Phys. Plasmas, 12 (2005), p. 082511
[40] et al. Phys. Rev. Lett., 68 (1992), p. 52
[41] et al. Sorrento, 2000 (2000) (EX/P5-13)
[42] et al. Phys. Rev. Lett., 85 (2000), p. 4534
[43] et al. Plasma Phys. Control. Fusion, 48 (2006), p. 385
[44] et al. Nucl. Fusion, 39 (1999), p. 1935
[45] et al. Vilamoura, 2004 (2004) (EX/P6-18)
[46] et al. Plasma Phys. Control. Fusion, 46 (2004), p. 1723
[47] et al. Nucl. Fusion, 40 (2000), p. 1917
[48] Nucl. Fusion, 45 (2005), p. 40
[49] et al. Proceedings of the 19th International Conference on Fusion Energy, Lyon, 2002, International Atomic Energy Agency (IAEA), Vienna, 2002 (EX/P1-04)
[50] et al. Phys. Plasmas, 5 (1998), p. 3974
[51] et al. Phys. Rev. Lett., 96 (2006), p. 095002
[52] et al. Nucl. Fusion, 46 (2006), p. 133
[53] T. Tala, X. Garbet, JET EFDA contributors, Physics of Internal Transport Barriers, C. R. Physique 7 (2006), this issue
[54] et al. Nucl. Fusion, 43 (2003), p. 975
[55] et al. Phys. Rev. Lett. (2005)
[56] et al. Phys. Plasmas, 8 (2001), p. 2793
[57] et al. Eur. J. Mech. B/Fluids, 23 (2004), p. 475
[58] et al. Plasma Phys. Control. Fusion, 39 (1997), p. B173
[59] Plasma Phys. Control. Fusion, 38 (1996), p. 611 (Corrigendum)
[60] et al. Plasma Phys. Control. Fusion, 47 (2005), p. B743
[61] et al. Phys. Plasmas, 12 (2005), p. 122306
[62] et al. Phys. Plasmas, 4 (1997), p. 2482
[63] et al. Nucl. Fusion, 42 (2002), p. L11
[64] et al. London, 2004, Europhysics Conference Abstracts, vol. 28G (2004) (P1.153)
[65] et al. Plasma Phys. Control. Fusion, 46 (2004), p. B557
[66] et al. Nucl. Fusion, 46 (2006), p. 306
- Transport and confinement physics: Chapter 2 of the special issue: on the path to tokamak burning plasma operation, Nuclear Fusion, Volume 65 (2025) no. 3, p. 033001 | DOI:10.1088/1741-4326/ad8ced
- Effect of modulated heat source on diffusive and avalanche-like transport, Nuclear Fusion, Volume 65 (2025) no. 3, p. 036024 | DOI:10.1088/1741-4326/adb2a4
- Turbulence spreading by resonant wave-wave interactions: A fractional kinetics approach, Physical Review E, Volume 109 (2024) no. 4 | DOI:10.1103/physreve.109.045105
- Low-frequency heat waves transport in graded Si–Ge alloys, AIP Advances, Volume 13 (2023) no. 10 | DOI:10.1063/5.0170397
- Self-consistent model of the plasma staircase and nonlinear Schrödinger equation with subquadratic power nonlinearity, Physical Review E, Volume 103 (2021) no. 5 | DOI:10.1103/physreve.103.052218
- Coupled heat pulse propagation in two-fluid plasmas, Physical Review E, Volume 103 (2021) no. 5 | DOI:10.1103/physreve.103.053201
- Progress and challenges in understanding core transport in tokamaks in support to ITER operations, Plasma Physics and Controlled Fusion, Volume 62 (2020) no. 1, p. 014021 | DOI:10.1088/1361-6587/ab5ae1
- Correcting for non-periodic behaviour in perturbative experiments: application to heat pulse propagation and modulated gas-puff experiments, Plasma Physics and Controlled Fusion, Volume 62 (2020) no. 9, p. 094001 | DOI:10.1088/1361-6587/ab9eaa
- The Radial Propagation of Heat in Strongly Driven Non-Equilibrium Fusion Plasmas, Entropy, Volume 21 (2019) no. 2, p. 148 | DOI:10.3390/e21020148
- Radial variation of heat transport in L-mode JET discharges, Nuclear Fusion, Volume 59 (2019) no. 5, p. 056006 | DOI:10.1088/1741-4326/ab03e1
- Nonlocal transport in bounded two-dimensional systems: An iterative method, Physical Review E, Volume 99 (2019) no. 1 | DOI:10.1103/physreve.99.013307
- Comparison of a 2D nonlocal transport model to ECRH experiments in LHD, Physics of Plasmas, Volume 26 (2019) no. 5 | DOI:10.1063/1.5089461
- Separation of transport in slow and fast time-scales using modulated heat pulse experiments (hysteresis in flux explained), Nuclear Fusion, Volume 58 (2018) no. 10, p. 106042 | DOI:10.1088/1741-4326/aadc17
- Heat flux reconstruction and effective diffusion estimation from perturbative experiments using advanced filtering and confidence analysis, Nuclear Fusion, Volume 58 (2018) no. 9, p. 096036 | DOI:10.1088/1741-4326/aad13e
- Lévy flights on a comb and the plasma staircase, Physical Review E, Volume 98 (2018) no. 2 | DOI:10.1103/physreve.98.022208
- Applicability of transfer entropy for the calculation of effective diffusivity in heat transport, Physics of Plasmas, Volume 25 (2018) no. 10 | DOI:10.1063/1.5041495
- Electron critical gradient scale length measurements of ICRF heated L-mode plasmas at Alcator C-Mod tokamak, Physics of Plasmas, Volume 25 (2018) no. 4 | DOI:10.1063/1.5022180
- A systematic approach to optimize excitations for perturbative transport experiments, Physics of Plasmas, Volume 25 (2018) no. 8 | DOI:10.1063/1.5010325
- New evidence and impact of electron transport non-linearities based on new perturbative inter-modulation analysis, Nuclear Fusion, Volume 57 (2017) no. 12, p. 126036 | DOI:10.1088/1741-4326/aa827a
- The role of magnetic islands in modifying long range temporal correlations of density fluctuations and local heat transport, Nuclear Fusion, Volume 56 (2016) no. 1, p. 016013 | DOI:10.1088/0029-5515/56/1/016013
- Perturbative thermal diffusivity from partial sawtooth crashes in Alcator C-Mod, Nuclear Fusion, Volume 56 (2016) no. 3, p. 036003 | DOI:10.1088/0029-5515/56/3/036003
- Self-adjoint integral operator for bounded nonlocal transport, Physical Review E, Volume 94 (2016) no. 5 | DOI:10.1103/physreve.94.053302
- Cold pulse and rotation reversals with turbulence spreading and residual stress, Physics of Plasmas, Volume 23 (2016) no. 5 | DOI:10.1063/1.4951023
- 25 Years of Self-organized Criticality: Space and Laboratory Plasmas, Space Science Reviews, Volume 198 (2016) no. 1-4, p. 167 | DOI:10.1007/s11214-015-0225-0
- Trapped electron mode driven electron heat transport in JET: experimental investigation and gyro-kinetic theory validation, Nuclear Fusion, Volume 55 (2015) no. 11, p. 113016 | DOI:10.1088/0029-5515/55/11/113016
- A mixed SOC-turbulence model for nonlocal transport and Lévy-fractional Fokker–Planck equation, Physics Letters A, Volume 378 (2014) no. 21, p. 1492 | DOI:10.1016/j.physleta.2014.03.047
- Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. I. Semi-infinite slab approximations, Physics of Plasmas, Volume 21 (2014) no. 11 | DOI:10.1063/1.4901309
- Comparison of a radial fractional transport model with tokamak experiments, Physics of Plasmas, Volume 21 (2014) no. 3 | DOI:10.1063/1.4868862
- Estimation of the thermal diffusion coefficient in fusion plasmas taking frequency measurement uncertainties into account, Plasma Physics and Controlled Fusion, Volume 56 (2014) no. 10, p. 105004 | DOI:10.1088/0741-3335/56/10/105004
- Difficulties and solutions for estimating transport by perturbative experiments, Plasma Physics and Controlled Fusion, Volume 56 (2014) no. 11, p. 114008 | DOI:10.1088/0741-3335/56/11/114008
- Isotropic model of fractional transport in two-dimensional bounded domains, Physical Review E, Volume 87 (2013) no. 5 | DOI:10.1103/physreve.87.052115
- Self-Consistent Dynamics of Impurities in Magnetically Confined Plasmas: Turbulence Intermittency and Nondiffusive Transport, Physical Review Letters, Volume 109 (2012) no. 18 | DOI:10.1103/physrevlett.109.185005
- Numerical analysis of the impact of the ion threshold, ion stiffness and temperature pedestal on global confinement and fusion performance in JET and in ITER plasmas, Plasma Physics and Controlled Fusion, Volume 54 (2012) no. 8, p. 085020 | DOI:10.1088/0741-3335/54/8/085020
- Simultaneous analysis of ion and electron heat transport by power modulation in JET, Nuclear Fusion, Volume 51 (2011) no. 11, p. 113016 | DOI:10.1088/0029-5515/51/11/113016
- Ion heat transport studies in JET, Plasma Physics and Controlled Fusion, Volume 53 (2011) no. 12, p. 124033 | DOI:10.1088/0741-3335/53/12/124033
- Perturbative studies of toroidal momentum transport using neutral beam injection modulation in the Joint European Torus: Experimental results, analysis methodology, and first principles modeling, Physics of Plasmas, Volume 17 (2010) no. 9 | DOI:10.1063/1.3480640
- Dimensionless pedestal identity plasmas on Alcator C-Mod and JET, Nuclear Fusion, Volume 49 (2009) no. 12, p. 125004 | DOI:10.1088/0029-5515/49/12/125004
- A novel method for trace tritium transport studies, Nuclear Fusion, Volume 49 (2009) no. 8, p. 085025 | DOI:10.1088/0029-5515/49/8/085025
- Experimental Study of the Ion Critical-Gradient Length and Stiffness Level and the Impact of Rotation in the JET Tokamak, Physical Review Letters, Volume 102 (2009) no. 17 | DOI:10.1103/physrevlett.102.175002
- Fractional Diffusion Models of Anomalous Transport, Anomalous Transport (2008), p. 163 | DOI:10.1002/9783527622979.ch6
- Chapter 10: Core Transport Studies in JET, Fusion Science and Technology, Volume 53 (2008) no. 4, p. 1152 | DOI:10.13182/fst08-a1750
- When can the Fokker–Planck equation describe anomalous or chaotic transport? Intuitive aspects, Plasma Physics and Controlled Fusion, Volume 50 (2008) no. 12, p. 124023 | DOI:10.1088/0741-3335/50/12/124023
- Quantifying Profile Stiffness, Plasma and Fusion Research, Volume 3 (2008), p. S1070 | DOI:10.1585/pfr.3.s1070
- When Can the Fokker-Planck Equation Describe Anomalous or Chaotic Transport?, Physical Review Letters, Volume 99 (2007) no. 18 | DOI:10.1103/physrevlett.99.185005
- Front propagation and critical gradient transport models, Physics of Plasmas, Volume 14 (2007) no. 12 | DOI:10.1063/1.2824375
- Critical temperature gradient length signatures in heat wave propagation across internal transport barriers in the Joint European Torus, Physics of Plasmas, Volume 14 (2007) no. 9 | DOI:10.1063/1.2772618
- Physics of Internal Transport Barriers, Comptes Rendus. Physique, Volume 7 (2006) no. 6 | DOI:10.1016/j.crhy.2006.06.005
- Introduction to turbulent transport in fusion plasmas, Comptes Rendus. Physique, Volume 7 (2006) no. 6, p. 573 | DOI:10.1016/j.crhy.2006.06.002
Cité par 48 documents. Sources : Crossref
Commentaires - Politique