[Les lasers à céramiques YAG]
Les matériaux lasers polycristallins transparents, ou « céramiques », offrent de nombreux avantages sur ceux élaborés par fusion, notamment des temps de production plus courts, l'accès à des solutions solides permettant la fabrication de matériaux à transition de phase multiple, une très grande homogénéité et la possibilité de définir des profils et des structures avant frittage. La qualité optique des céramiques a beaucoup progressé et de nouveaux matériaux ont été explorés. Le développement des céramiques concentrées Nd :YAG a ouvert la voie à une réduction drastique de la production de chaleur grâce au pompage direct sur le niveau supérieur. Ceci est particulièrement intéressant pour la fabrication de structures composites du fait de faibles coûts de fabrication liés à la production de masse et de délais de production courts, en comparaison du soudage par diffusion conventionnel. Ce travail décrit un laser émettant plus de 300 W en continu, basé sur une micropuce composite monocristal Yb :YAG/céramique YAG pompée par le côté. Nous discutons aussi des développements futurs, en particulier l'adaptation du profil spectral.
Transparent polycrystalline that is ‘ceramic’ laser materials offer numerous advantages over melt growth methods, including faster production times, their solid solution allows the fabrication of multi-phase transition materials that are highly homogeneous and they show the ability to engineer profiles and structures before sintering. Much progress has been made in improving the optical quality of ceramics, as well as exploring new laser materials. Successfully developed concentrated Nd:YAG ceramics has opened the way for drastic heat reduction by pumping directly into the upper laser level. Especially for the composite structure fabrication, it is attractive because of low fabrication costs by mass production and short delivery times compared with conventional diffusion bonding. In this research, we report on continuous wave (CW) laser operation in an edge-pumped 300 μm-thick, single crystal Yb:YAG/ceramic YAG composite microchip.
Mot clés : Céramique Nd :YAG, Laser continu, Yb :YAG/céramique YAG
Takunori Taira 1
@article{CRPHYS_2007__8_2_138_0, author = {Takunori Taira}, title = {Ceramic {YAG} lasers}, journal = {Comptes Rendus. Physique}, pages = {138--152}, publisher = {Elsevier}, volume = {8}, number = {2}, year = {2007}, doi = {10.1016/j.crhy.2006.08.002}, language = {en}, }
Takunori Taira. Ceramic YAG lasers. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 138-152. doi : 10.1016/j.crhy.2006.08.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.08.002/
[1] Diode pumped solid-state lasers, Science, Volume 239 (1988), pp. 742-747
[2] Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers, Opt. Lett., Volume 16 (1991), pp. 1955-1957
[3] Ytterbium-doped apatite-structure crystals: A new class of laser materials, J. Appl. Phys., Volume 76 (1994), pp. 497-503
[4] Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers, J. Am. Ceram. Soc., Volume 78 (1995), pp. 1033-1040
[5] Diode-pumped Nd:YAG ceramics lasers, OSA TOPS on Advanced Solid-State Lasers, Volume 19 (1998), pp. 430-432
[6] Highly trivalent neodymium ion doped YAG ceramic for microchip lasers, OSA TOPS on Advanced Solid-State Lasers, Volume 26 (1999), pp. 212-215
[7] High-power Nd:Y3Al5O12 ceramic laser, Jpn. J. Appl. Phys., Volume 39 (2000), p. L1048-L1050
[8] Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4, Appl. Phys. B, Volume 58 (1994), pp. 373-379
[9] Single-transverse-mode LiNdP4O12 slab waveguide laser, J. Appl. Phys., Volume 50 (1979), pp. 653-659
[10] Effective cross section of the Nd:YAG 1.0641-μm laser transition, J. Appl. Phys., Volume 62 (1987), pp. 4041-4044
[11] Analysis of the ground term energy levels for triply ionized neodymium in yttrium orthovanadate, J. Chem. Phys., Volume 62 (1975), pp. 4125-4129
[12] Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4, J. Opt. Soc. Am., Volume 66 (1976), pp. 1405-1414
[13] Optical-absorption intensities of trivalent neodymium in the uniaxial yttrium orthovanadate, J. Appl. Phys., Volume 49 (1978), pp. 5517-5522
[14] Stimulated emission cross sections of Nd:YVO4 and Nd:La2Be2O5 (BeL), J. Appl. Phys., Volume 52 (1981), pp. 3067-3068
[15] Efficient Cr3+ sensitized Nd3+:GdScGa-garnet laser at 1.064 μm, Appl. Phys. B, Volume 28 (1982), pp. 355-358
[16] Lasing and spectroscopic characteristics of a new Nd laser crystal-strontium fluorovanadate, OSA Proceeding on Advanced Solid-State Lasers, Volume 20 (1994), pp. 32-36
[17] Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm, Opt. Commun., Volume 205 (2002), pp. 361-365
[18] Spectral parameters of Nd3+-ion in the polycrystalline solid-solution composed of Y3Al5O12 and Y3Sc2Al3O12, Jpn. J. Appl. Phys., Volume 42 (2003), pp. 5071-5074
[19] Highly efficient Nd:YVO4 diode-laser end-pumped laser, Appl. Phys. Lett., Volume 51 (1987), pp. 1885-1886
[20] Single-mode 1.34-μm Nd:YVO4 microchip laser with cw Ti:sapphire and diode-laser pumping, Opt. Lett., Volume 19 (1994), pp. 957-959
[21] The Physics and Engineering of Solid-State Lasers, SPIE Press, Bellingham, 2006 (p. 159)
[22] Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics, Appl. Phys. Lett., Volume 77 (2000), pp. 939-941
[23] Ceramic lasers, IEICE Transactions C, Volume J84-C (2001), pp. 918-925 (in Japanese)
[24] Solid-State Laser Engineering, Springer-Verlag, Berlin, 1999 (p. 412)
[25] Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers, IEEE J. Quantum Electron. QE-33 (1997), pp. 861-873
[26] Single-frequency microchip Nd lasers, Opt. Lett., Volume 14 (1989), pp. 24-26
[27] T. Taira, A. Ikesue, K. Yoshida, Performance of highly Nd3+-doped YAG ceramic microchip laser, in: Conference on Lasers and Electro-Optics CLEO '99, CTuK39, 1999, pp. 136–137
[28] Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level, IEEE J. Quantum Electron. QE-38 (2002), pp. 240-245
[29] Thermal-birefringence-induced depolarization in Nd:YAG ceramics, Opt. Lett., Volume 27 (2002), pp. 234-236
[30] Effect of birefringence on the performance of linearly polarized YAG:Nd lasers, IEEE J. Quantum Electron. QE-6 (1970), pp. 556-557
[31] Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal, Appl. Phys. Lett., Volume 80 (2002), pp. 3048-3050
[32] Heat generation in Nd:YAG and Yb:YAG, IEEE J. Quantum Electron. QE-29 (1993), pp. 1457-1459
[33] Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics, Opt. Commun., Volume 195 (2001), pp. 225-232
[34] Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics, Appl. Phys. Lett., Volume 79 (2001), pp. 590-592
[35] Thermally boosted pumping of neodymium lasers, Appl. Opt., Volume 39 (2000), pp. 3093-3098
[36] The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics, Phys. Rev. B, Volume 64 (2001), p. 092102
[37] Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the one-micron continuous-wave Nd:Y3 Al5O12 laser emission, Appl. Phys. Lett., Volume 83 (2003), pp. 3653-3655
[38] Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level, Appl. Phys. Lett., Volume 82 (2003), pp. 844-846
[39] Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4, Opt. Lett., Volume 28 (2003), pp. 2366-2368
[40] Room-temperature diode-pumped Yb:YAG laser, Opt. Lett., Volume 14 (1991), pp. 1089-1091
[41] Modeling of quasi-three-level lasers and operation of CW Yb:YAG lasers, Appl. Opt., Volume 36 (1997), pp. 1867-1874
[42] Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm, Opt. Lett., Volume 20 (1995), pp. 713-715
[43] Tunable frequency-doubled Yb:YAG microchip lasers, Opt. Mat., Volume 34 (2000), pp. 106-111
[44] 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser, Opt. Lett., Volume 28 (2003), pp. 367-369
[45] A 1-kW CW thin disc laser, IEEE J. Selected Topics in Quantum Electron., Volume 6 (2000), pp. 650-657
[46] Radial-pumped microchip high-power composite Yb:YAG laser: design and power characteristics, Jpn. J. Appl. Phys., Volume 40 (2001), pp. 146-152
[47] 90 W continuous-wave diode edge-pumped microchip composite Yb:Y3Al5O12 laser, Appl. Phys. Lett., Volume 83 (2003), pp. 4086-4088
[48] 300 W continuous-wave operation of diode edge-pumped, hybrid composite Yb:YAG microchip laser, Opt. Lett., Volume 31 (2006), pp. 2003-2005
[49] Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser, Appl. Phys. Lett., Volume 85 (2004), pp. 5845-5847
Cité par Sources :
Commentaires - Politique