Comptes Rendus
Ceramic YAG lasers
[Les lasers à céramiques YAG]
Comptes Rendus. Physique, Recent advances in crystal optics, Volume 8 (2007) no. 2, pp. 138-152.

Les matériaux lasers polycristallins transparents, ou « céramiques », offrent de nombreux avantages sur ceux élaborés par fusion, notamment des temps de production plus courts, l'accès à des solutions solides permettant la fabrication de matériaux à transition de phase multiple, une très grande homogénéité et la possibilité de définir des profils et des structures avant frittage. La qualité optique des céramiques a beaucoup progressé et de nouveaux matériaux ont été explorés. Le développement des céramiques concentrées Nd :YAG a ouvert la voie à une réduction drastique de la production de chaleur grâce au pompage direct sur le niveau supérieur. Ceci est particulièrement intéressant pour la fabrication de structures composites du fait de faibles coûts de fabrication liés à la production de masse et de délais de production courts, en comparaison du soudage par diffusion conventionnel. Ce travail décrit un laser émettant plus de 300 W en continu, basé sur une micropuce composite monocristal Yb :YAG/céramique YAG pompée par le côté. Nous discutons aussi des développements futurs, en particulier l'adaptation du profil spectral.

Transparent polycrystalline that is ‘ceramic’ laser materials offer numerous advantages over melt growth methods, including faster production times, their solid solution allows the fabrication of multi-phase transition materials that are highly homogeneous and they show the ability to engineer profiles and structures before sintering. Much progress has been made in improving the optical quality of ceramics, as well as exploring new laser materials. Successfully developed concentrated Nd:YAG ceramics has opened the way for drastic heat reduction by pumping directly into the upper laser level. Especially for the composite structure fabrication, it is attractive because of low fabrication costs by mass production and short delivery times compared with conventional diffusion bonding. In this research, we report on >300 W continuous wave (CW) laser operation in an edge-pumped 300 μm-thick, single crystal Yb:YAG/ceramic YAG composite microchip.

Publié le :
DOI : 10.1016/j.crhy.2006.08.002
Keywords: Nd:YAG ceramics, CW laser, Yb:YAG/ceramic YAG
Mots-clés : Céramique Nd :YAG, Laser continu, Yb :YAG/céramique YAG

Takunori Taira 1

1 Laser Research Center for Molecular Science, Institute for Molecular Science (IMS), 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
@article{CRPHYS_2007__8_2_138_0,
     author = {Takunori Taira},
     title = {Ceramic {YAG} lasers},
     journal = {Comptes Rendus. Physique},
     pages = {138--152},
     publisher = {Elsevier},
     volume = {8},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crhy.2006.08.002},
     language = {en},
}
TY  - JOUR
AU  - Takunori Taira
TI  - Ceramic YAG lasers
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 138
EP  - 152
VL  - 8
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.08.002
LA  - en
ID  - CRPHYS_2007__8_2_138_0
ER  - 
%0 Journal Article
%A Takunori Taira
%T Ceramic YAG lasers
%J Comptes Rendus. Physique
%D 2007
%P 138-152
%V 8
%N 2
%I Elsevier
%R 10.1016/j.crhy.2006.08.002
%G en
%F CRPHYS_2007__8_2_138_0
Takunori Taira. Ceramic YAG lasers. Comptes Rendus. Physique, Recent advances in crystal optics, Volume 8 (2007) no. 2, pp. 138-152. doi : 10.1016/j.crhy.2006.08.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.08.002/

[1] R.L. Byer Diode pumped solid-state lasers, Science, Volume 239 (1988), pp. 742-747

[2] T. Taira; A. Mukai; Y. Nozawa; T. Kobayashi Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers, Opt. Lett., Volume 16 (1991), pp. 1955-1957

[3] S.A. Payne; L.L. DeLoach; L.K. Smith; W.L. Kway; J.B. Tassano; W.F. Krupke; B.H.T. Chai; G. Loutts Ytterbium-doped apatite-structure crystals: A new class of laser materials, J. Appl. Phys., Volume 76 (1994), pp. 497-503

[4] A. Ikesue; T. Kinoshita; K. Kamata; K. Yoshida Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers, J. Am. Ceram. Soc., Volume 78 (1995), pp. 1033-1040

[5] T. Taira; A. Ikesue; K. Yoshida Diode-pumped Nd:YAG ceramics lasers, OSA TOPS on Advanced Solid-State Lasers, Volume 19 (1998), pp. 430-432

[6] T. Taira; S. Kurimura; J. Saikawa; A. Ikesue; K. Yoshida Highly trivalent neodymium ion doped YAG ceramic for microchip lasers, OSA TOPS on Advanced Solid-State Lasers, Volume 26 (1999), pp. 212-215

[7] J. Lu; J. Song; M. Prabhu; J. Xu; K. Ueda; H. Yagi; T. Yanagitani; A. Kudryashov High-power Nd:Y3Al5O12 ceramic laser, Jpn. J. Appl. Phys., Volume 39 (2000), p. L1048-L1050

[8] T. Jensen; V.G. Ostroumov; J.-P. Meyn Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4, Appl. Phys. B, Volume 58 (1994), pp. 373-379

[9] K. Kubodera; K. Otuka Single-transverse-mode LiNdP4O12 slab waveguide laser, J. Appl. Phys., Volume 50 (1979), pp. 653-659

[10] K. Fuhrmann; N. Hodgson; F. Hollinger; H. Weber Effective cross section of the Nd:YAG 1.0641-μm laser transition, J. Appl. Phys., Volume 62 (1987), pp. 4041-4044

[11] N. Karayianis; C.A. Morrison; D.E. Wortman Analysis of the ground term energy levels for triply ionized neodymium in yttrium orthovanadate, J. Chem. Phys., Volume 62 (1975), pp. 4125-4129

[12] P.P. Yaney; L.G. DeShazer Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4, J. Opt. Soc. Am., Volume 66 (1976), pp. 1405-1414

[13] T.S. Lomheim; L.G. DeShazer Optical-absorption intensities of trivalent neodymium in the uniaxial yttrium orthovanadate, J. Appl. Phys., Volume 49 (1978), pp. 5517-5522

[14] A.W. Tucker; M. Birnbaum; C.L. Fincher Stimulated emission cross sections of Nd:YVO4 and Nd:La2Be2O5 (BeL), J. Appl. Phys., Volume 52 (1981), pp. 3067-3068

[15] D. Pruss; G. Huber; A. Beimowski; V.V. Laptev; I.A. Shcherbakov; Y.V. Zharikov Efficient Cr3+ sensitized Nd3+:GdScGa-garnet laser at 1.064 μm, Appl. Phys. B, Volume 28 (1982), pp. 355-358

[16] P. Hong; X.X. Zhang; G. Loutts; R.E. Peale; H. Weidner; M. Bass; B.H.T. Chai; S.A. Payne; L.D. DeLoach; L.K. Smith; W.F. Krupke Lasing and spectroscopic characteristics of a new Nd laser crystal-strontium fluorovanadate, OSA Proceeding on Advanced Solid-State Lasers, Volume 20 (1994), pp. 32-36

[17] C. Czeranowsky; M. Schmidt; E. Heumann; G. Huber; S. Kutovoi; Y. Zavartsev Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm, Opt. Commun., Volume 205 (2002), pp. 361-365

[18] Y. Sato; T. Taira; A. Ikesue Spectral parameters of Nd3+-ion in the polycrystalline solid-solution composed of Y3Al5O12 and Y3Sc2Al3O12, Jpn. J. Appl. Phys., Volume 42 (2003), pp. 5071-5074

[19] R.A. Fields; M. Birnbum; C.L. Fincher Highly efficient Nd:YVO4 diode-laser end-pumped laser, Appl. Phys. Lett., Volume 51 (1987), pp. 1885-1886

[20] G.C. Bowkett; T. Taira; G.W. Baxter; H. Teranishi; D.J. Booth; T. Kobayashi Single-mode 1.34-μm Nd:YVO4 microchip laser with cw Ti:sapphire and diode-laser pumping, Opt. Lett., Volume 19 (1994), pp. 957-959

[21] Y. Kalisky The Physics and Engineering of Solid-State Lasers, SPIE Press, Bellingham, 2006 (p. 159)

[22] I. Shoji; Y. Sato; S. Kurimura; T. Taira; A. Ikesue; K. Yoshida Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics, Appl. Phys. Lett., Volume 77 (2000), pp. 939-941

[23] I. Shoji; T. Taira; A. Ikesue Ceramic lasers, IEICE Transactions C, Volume J84-C (2001), pp. 918-925 (in Japanese)

[24] W. Koechner Solid-State Laser Engineering, Springer-Verlag, Berlin, 1999 (p. 412)

[25] D.C. Brown Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers, IEEE J. Quantum Electron. QE-33 (1997), pp. 861-873

[26] J.J. Zayhowski; A. Mooradian Single-frequency microchip Nd lasers, Opt. Lett., Volume 14 (1989), pp. 24-26

[27] T. Taira, A. Ikesue, K. Yoshida, Performance of highly Nd3+-doped YAG ceramic microchip laser, in: Conference on Lasers and Electro-Optics CLEO '99, CTuK39, 1999, pp. 136–137

[28] V. Lupei; N. Pavel; T. Taira Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level, IEEE J. Quantum Electron. QE-38 (2002), pp. 240-245

[29] I. Shoji; Y. Sato; S. Kurimura; V. Lupei; T. Taira; A. Ikesue; K. Yoshida Thermal-birefringence-induced depolarization in Nd:YAG ceramics, Opt. Lett., Volume 27 (2002), pp. 234-236

[30] W. Koechner; D.K. Rice Effect of birefringence on the performance of linearly polarized YAG:Nd lasers, IEEE J. Quantum Electron. QE-6 (1970), pp. 556-557

[31] I. Shoji; T. Taira Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal, Appl. Phys. Lett., Volume 80 (2002), pp. 3048-3050

[32] T.Y. Fan Heat generation in Nd:YAG and Yb:YAG, IEEE J. Quantum Electron. QE-29 (1993), pp. 1457-1459

[33] V. Lupei; T. Taira; A. Lupei; N. Pavel; I. Shoji; A. Ikesue Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics, Opt. Commun., Volume 195 (2001), pp. 225-232

[34] V. Lupei; A. Lupei; N. Pavel; T. Taira; I. Shoji; A. Ikesue Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics, Appl. Phys. Lett., Volume 79 (2001), pp. 590-592

[35] R. Lavi; S. Jackel Thermally boosted pumping of neodymium lasers, Appl. Opt., Volume 39 (2000), pp. 3093-3098

[36] V. Lupei; A. Lupei; S. Georgescu; T. Taira; Y. Sato; A. Ikesue The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics, Phys. Rev. B, Volume 64 (2001), p. 092102

[37] V. Lupei; N. Pavel; T. Taira Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the one-micron continuous-wave Nd:Y3 Al5O12 laser emission, Appl. Phys. Lett., Volume 83 (2003), pp. 3653-3655

[38] Y. Sato; T. Taira; N. Pavel; V. Lupei Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level, Appl. Phys. Lett., Volume 82 (2003), pp. 844-846

[39] V. Lupei; N. Pavel; Y. Sato; T. Taira Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4, Opt. Lett., Volume 28 (2003), pp. 2366-2368

[40] T.Y. Fan Room-temperature diode-pumped Yb:YAG laser, Opt. Lett., Volume 14 (1991), pp. 1089-1091

[41] T. Taira; W.M. Tulloch; R.L. Byer Modeling of quasi-three-level lasers and operation of CW Yb:YAG lasers, Appl. Opt., Volume 36 (1997), pp. 1867-1874

[42] U. Brauch; A. Giesen; M. Karszewski; Chr. Stewen; A. Voss Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm, Opt. Lett., Volume 20 (1995), pp. 713-715

[43] J. Saikawa; S. Kurimura; N. Pavel; I. Shoji; T. Taira; J. Saikawa; S. Kurimura; I. Shoji; T. Taira Tunable frequency-doubled Yb:YAG microchip lasers, Opt. Mat., Volume 34 (2000), pp. 106-111

[44] E. Innerhofer; T. Südmeyer; F. Brunner; R. Häring; A. Aschwanden; R. Paschtta; C. Hönninger; M. Kumkar; U. Keller 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser, Opt. Lett., Volume 28 (2003), pp. 367-369

[45] C. Stewen; K. Contag; M. Larionov; A. Giesen; H. Hugel A 1-kW CW thin disc laser, IEEE J. Selected Topics in Quantum Electron., Volume 6 (2000), pp. 650-657

[46] N. Pavel; J. Saikawa; T. Taira Radial-pumped microchip high-power composite Yb:YAG laser: design and power characteristics, Jpn. J. Appl. Phys., Volume 40 (2001), pp. 146-152

[47] T. Dascalu; N. Pavel; T. Taira 90 W continuous-wave diode edge-pumped microchip composite Yb:Y3Al5O12 laser, Appl. Phys. Lett., Volume 83 (2003), pp. 4086-4088

[48] M. Tsunekane; T. Taira 300 W continuous-wave operation of diode edge-pumped, hybrid composite Yb:YAG microchip laser, Opt. Lett., Volume 31 (2006), pp. 2003-2005

[49] J. Saikawa; Y. Sato; T. Taira; A. Ikesue Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser, Appl. Phys. Lett., Volume 85 (2004), pp. 5845-5847

  • Francesco Picelli; Jan Hostaša; Andreana Piancastelli; Valentina Biasini; Cesare Melandri; Laura Esposito Beyond Scanning Electron Microscopy: Comprehensive Pore Analysis in Transparent Ceramics Using Optical Microscopy, Ceramics, Volume 7 (2024) no. 1, p. 401 | DOI:10.3390/ceramics7010025
  • Xiang Li; Chen Hu; Qiang Liu; Dariusz Hreniak; Jiang Li Fluoride transparent ceramics for solid-state lasers: A review, Journal of Advanced Ceramics, Volume 13 (2024) no. 12, p. 1891 | DOI:10.26599/jac.2024.9220986
  • Vinay Rastogi; Shivanand Chaurasia Advances in and Future Perspectives on High-Power Ceramic Lasers, Photonics, Volume 11 (2024) no. 10, p. 942 | DOI:10.3390/photonics11100942
  • E. David Gonzalez; Sergio A. Rincón-Ortiz; R. Ospina Yttrium aluminum garnet analyzed by x-ray photoelectron spectroscopy, Surface Science Spectra, Volume 31 (2024) no. 1 | DOI:10.1116/6.0003128
  • V.A. Tarala; V.E. Suprunchuk; A.A. Kravtsov; F.F. Malyavin; D.S. Vakalov; L.V. Tarala; V.A. Lapin; O.M. Chapura; E.V. Medyanik; D.T. Dziov; S.V. Kuznetsov Fabrication and optical properties of YSAG:Cr optical ceramics, Ceramics International, Volume 49 (2023) no. 19, p. 32127 | DOI:10.1016/j.ceramint.2023.07.181
  • A.A. Kravtsov; V.A. Tarala; F.F. Malyavin; D.S. Vakalov; V.E. Suprunchuk; L.V. Tarala; V.A. Lapin; E.V. Medyanik; E.A. Brazhko; O.M. Chapura Optical and luminescent properties of quasi-stoichiometric YAG: Cr3+ ceramics, Journal of the European Ceramic Society, Volume 43 (2023) no. 15, p. 7085 | DOI:10.1016/j.jeurceramsoc.2023.07.058
  • Kseniia Orekhova; Maria Zamoryanskaya Decay kinetics in single crystals and ceramics based on yttrium aluminum garnet doped with rare earth ions, Journal of Luminescence, Volume 251 (2022), p. 119228 | DOI:10.1016/j.jlumin.2022.119228
  • Gagik Demirkhanyan; Barbara Patrizi; Radik Kostanyan; Jiang Li; Angela Pirri; Yagang Feng; Tengfei Xie; Lexiang Wu; Matteo Vannini; Maurizio Becucci; David Zargaryan; Guido Toci Evidence of two Yb3+ crystallographic sites occupancy in Y3Al5O12 ceramics from an in depth spectroscopic analysis, Journal of Solid State Chemistry, Volume 316 (2022), p. 123577 | DOI:10.1016/j.jssc.2022.123577
  • Feng Tian; Akio Ikesue; Jiang Li Progress and perspectives on composite laser ceramics: A review, Journal of the European Ceramic Society, Volume 42 (2022) no. 5, p. 1833 | DOI:10.1016/j.jeurceramsoc.2021.12.061
  • Jan Hostaša Ceramics for Laser Technologies, Encyclopedia of Materials: Technical Ceramics and Glasses (2021), p. 110 | DOI:10.1016/b978-0-12-803581-8.11779-5
  • Xinwen Liu; Bingchu Mei; Weiwei Li; Yu Yang; Guoqiang Yi; Zhiwei Zhou; Zuodong Liu Co-precipitation synthesis of highly sinterable Yb:Sr5(PO4)3F powder for transparent ceramics, Ceramics International, Volume 46 (2020) no. 10, p. 14391 | DOI:10.1016/j.ceramint.2020.02.234
  • Z. Y. Sun; H. L. Gong; Y. Q. Yan; T. B. Smith; J. Li; J. Y. Lin; H. X. Jiang Polarization-resolved Er emission in Er doped GaN bulk crystals, Journal of Applied Physics, Volume 127 (2020) no. 24 | DOI:10.1063/5.0012969
  • Yaqiong Yan; Zhenyu Sun; Weiping Zhao; Jing Li; Jingyu Lin; Hongxing Jiang Optical properties of GaN/Er:GaN/GaN core–cladding planar waveguides, Applied Physics Express, Volume 12 (2019) no. 7, p. 075505 | DOI:10.7567/1882-0786/ab2730
  • Z. Y. Sun; Y. Q. Yan; T. B. Smith; W. P. Zhao; J. Li; J. Y. Lin; H. X. Jiang Growth and fabrication of GaN/Er:GaN/GaN core-cladding planar waveguides, Applied Physics Letters, Volume 114 (2019) no. 22 | DOI:10.1063/1.5093942
  • J.C.A. Santos; E.P. Silva; D.V. Sampaio; Y.G.S. Alves; M.V.S. Rezende; C. Kucera; J. Ballato; R.S. Silva Structural, microstructural, and luminescent properties of laser-sintered Eu-doped YAG ceramics, Optical Materials, Volume 89 (2019), p. 334 | DOI:10.1016/j.optmat.2019.01.038
  • Hanan Ali; Mohamed Atta Khedr Energy transfer between Ce and Sm co-doped YAG nanocrystals for white light emitting devices, Results in Physics, Volume 12 (2019), p. 1777 | DOI:10.1016/j.rinp.2019.01.093
  • Z. Y. Sun; Y. Q. Yan; W. P. Zhao; J. Li; J. Y. Lin; H. X. Jiang Resonant excitation cross-sections of erbium in freestanding GaN bulk crystals, Applied Physics Letters, Volume 112 (2018) no. 20 | DOI:10.1063/1.5030347
  • Akio Ikesue; Yan Aung; Tomosumi Kamimura; Sawao Honda; Yuji Iwamoto Composite Laser Ceramics by Advanced Bonding Technology, Materials, Volume 11 (2018) no. 2, p. 271 | DOI:10.3390/ma11020271
  • Z. Y. Sun; J. Li; W. P. Zhao; J. Y. Lin; H. X. Jiang Toward the realization of erbium-doped GaN bulk crystals as a gain medium for high energy lasers, Applied Physics Letters, Volume 109 (2016) no. 5 | DOI:10.1063/1.4960360
  • Kisla P.F. Siqueira; Alexandre P. Carmo; Maria José V. Bell; Anderson Dias Optical properties of undoped NdTaO 4 , ErTaO 4 and YbTaO 4 ceramics, Journal of Luminescence, Volume 179 (2016), p. 146 | DOI:10.1016/j.jlumin.2016.06.054
  • Alexandre Doucet; Gisia Beydaghyan; Pandurang V. Ashrit; Jean-François Bisson Compact linearly polarized ceramic laser made with anisotropic nanostructured thin films, Applied Optics, Volume 54 (2015) no. 28, p. 8326 | DOI:10.1364/ao.54.008326
  • Agata Sidorowicz; Magdalena Nakielska; Anna Wajler; Helena Węglarz; Andrzej Olszyna Effect of Tm2O3 doping on microstructure and optical properties of Tm:YAG ceramics, Ceramics International, Volume 41 (2015) no. 7, p. 9051 | DOI:10.1016/j.ceramint.2015.03.277
  • Agata Sidorowicz; Magdalena Nakielska; Anna Wajler; Helena Węglarz; Katarzyna Jach; Andrzej Olszyna Fabrication and optical studies of transparent Tm, Ho:YAG ceramics, Optical Materials, Volume 50 (2015), p. 52 | DOI:10.1016/j.optmat.2015.06.005
  • Robert Tomala; Lukasz Marciniak; Jiang Li; Yubai Pan; Katarzyna Lenczewska; Wieslaw Strek; Dariusz Hreniak Comprehensive study of photoluminescence and cathodoluminescence of YAG:Eu3+ nano- and microceramics, Optical Materials, Volume 50 (2015), p. 59 | DOI:10.1016/j.optmat.2015.06.042
  • Dongbi Bai; Wenxue Li; Xianghui Yang; Xuewei Ba; Jiang Li; Yubai Pan; Heping Zeng Continuous-wave laser performance of non-aqueous tape casting fabricated Yb:YAG ceramics, Optical Materials Express, Volume 5 (2015) no. 2, p. 330 | DOI:10.1364/ome.5.000330
  • Dae-Woo Jeon; Zhenyu Sun; Jing Li; Jingyu Lin; Hongxing Jiang Erbium doped GaN synthesized by hydride vapor-phase epitaxy, Optical Materials Express, Volume 5 (2015) no. 3, p. 596 | DOI:10.1364/ome.5.000596
  • Agata Sidorowicz; Anna Wajler; Helena Węglarz; Andrzej Olszyna Precipitation of Tm2O3 nanopowders for application in reactive sintering of Tm:YAG, Ceramics International, Volume 40 (2014) no. 7, p. 10269 | DOI:10.1016/j.ceramint.2014.02.117
  • Marina Serantoni; Anna Luisa Costa; Chiara Zanelli; Laura Esposito Crystallization behaviour of Yb-doped and undoped YAG nanoceramics synthesized by microwave-assisted urea precipitation, Ceramics International, Volume 40 (2014) no. 8, p. 11837 | DOI:10.1016/j.ceramint.2014.04.018
  • Qiang Liu; Jing Liu; Jiang Li; Maxim Ivanov; Anatoliy Medvedev; Yanping Zeng; Guoxi Jin; Xuewei Ba; Wenbin Liu; Benxue Jiang; Yubai Pan; Jingkun Guo Solid-state reactive sintering of YAG transparent ceramics for optical applications, Journal of Alloys and Compounds, Volume 616 (2014), p. 81 | DOI:10.1016/j.jallcom.2014.06.013
  • Kaijie Ning; Qingli Zhang; Deming Zhang; Jintai Fan; Dunlu Sun; Xiaofei Wang; Yin Hang Crystal growth, characterization of NdTaO4: A new promising stoichiometric neodymium laser material, Journal of Crystal Growth, Volume 388 (2014), p. 83 | DOI:10.1016/j.jcrysgro.2013.10.030
  • Gang Lu; Bingchu Mei; Jinghong Song; Weiwei Li; Ruzhen Xing Fabrication and properties of highly transparent Nd-doped CaF2 ceramics, Materials Letters, Volume 115 (2014), p. 162 | DOI:10.1016/j.matlet.2013.05.055
  • W. Zhang; Y. L. Liang; Z. F. Hu; Z. Y. Feng; S. X. Liu; X. Sheng Y3−x(Al0·9In0·1)5O12:Eu: preparation, structure effect on luminescent properties, Materials Research Innovations, Volume 18 (2014) no. sup2, p. S2-167 | DOI:10.1179/1432891714z.000000000393
  • Hanan Ali; Maram T. H. Abou Kana; Mohamed Atta Khedr Spectroscopy and Optical Properties of Sm3+:YAG Nanocrystalline Powder Prepared by Co-Precipitation Method: Effect of Sm3+ Ions Concentrations, Open Journal of Applied Sciences, Volume 04 (2014) no. 03, p. 96 | DOI:10.4236/ojapps.2014.43011
  • Lin Ge; Jiang Li; Zhiwei Zhou; Haiyun Qu; Manjiang Dong; Yan Zhu; Tengfei Xie; Wei Li; Min Chen; Huamin Kou; Yun Shi; Yubai Pan; Xiqi Feng; Jingkun Guo Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser, Optical Materials Express, Volume 4 (2014) no. 5, p. 1042 | DOI:10.1364/ome.4.001042
  • Ting Zhao; Yong Wang; Deyuan Shen; Jian Zhang; Dingyuan Tang; Hao Chen Continuous-wave and Q-switched operation of a resonantly pumped polycrystalline ceramic Ho:LuAG laser, Optics Express, Volume 22 (2014) no. 16, p. 19014 | DOI:10.1364/oe.22.019014
  • Min Zeng; Yun Hong Wang The Effect of Precipitate Agent in Co-Precipitation Synthesis Y3Al5O12 and Y3Fe5O12 Powders, Advanced Materials Research, Volume 750-752 (2013), p. 479 | DOI:10.4028/www.scientific.net/amr.750-752.479
  • A. Jolly System sizing issues with diode-pumped quasi-three-level materials, Handbook of Solid-State Lasers (2013), p. 283 | DOI:10.1533/9780857097507.2.283
  • V.B. Kravchenko; Y.L. Kopylov; V.A Kotel’nikov Oxide laser ceramics, Handbook of Solid-State Lasers (2013), p. 54 | DOI:10.1533/9780857097507.1.54
  • Xianpeng Qin; Hao Yang; Deyuan Shen; Hao Chen; Guohong Zhou; Dewei Luo; Jian Zhang; Shiwei Wang; Jan Ma; Dingyuan Tang Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye‐Safe Solid‐State Lasers“, International Journal of Applied Ceramic Technology, Volume 10 (2013) no. 1, p. 123 | DOI:10.1111/j.1744-7402.2011.02732.x
  • A. K. Nath High Power Lasers in Material Processing Applications: An Overview of Recent Developments, Laser-Assisted Fabrication of Materials, Volume 161 (2013), p. 69 | DOI:10.1007/978-3-642-28359-8_2
  • Yiquan Wu; Jing Du; Robert L. Clark Synthesis of Yb3+ doped Sr5(PO4)3F nanoparticles through co-precipitation, Materials Letters, Volume 107 (2013), p. 68 | DOI:10.1016/j.matlet.2013.05.111
  • Jan Hostaša; Laura Esposito; Daniele Alderighi; Angela Pirri Preparation and characterization of Yb-doped YAG ceramics, Optical Materials, Volume 35 (2013) no. 4, p. 798 | DOI:10.1016/j.optmat.2012.05.028
  • Zhi-chao Wu; Xiu-li Zhang Dual-polarization electro-optical Q-switched ceramic laser, Optik - International Journal for Light and Electron Optics, Volume 124 (2013) no. 18, p. 3457 | DOI:10.1016/j.ijleo.2012.10.021
  • Min Zeng; Yongjun Ma; Yunhong Wang; Chonghua Pei The effect of precipitant on co-precipitation synthesis of yttrium aluminum garnet powders, Ceramics International, Volume 38 (2012) no. 8, p. 6951 | DOI:10.1016/j.ceramint.2012.05.066
  • Wenbin Liu; Jiang Li; Benxue Jiang; Di Zhang; Yubai Pan Effect of La2O3 on microstructures and laser properties of Nd:YAG ceramics, Journal of Alloys and Compounds, Volume 512 (2012) no. 1, p. 1 | DOI:10.1016/j.jallcom.2011.09.038
  • Jan Hostaša; Laura Esposito; Andreana Piancastelli Influence of Yb and Si content on the sintering and phase changes of Yb:YAG laser ceramics, Journal of the European Ceramic Society, Volume 32 (2012) no. 11, p. 2949 | DOI:10.1016/j.jeurceramsoc.2012.02.045
  • Xianpeng Qin; Hao Yang; Guohong Zhou; Dewei Luo; Yan Yang; Jian Zhang; Shiwei Wang; Jan Ma; Dingyuan Tang Fabrication and properties of highly transparent Er:YAG ceramics, Optical Materials, Volume 34 (2012) no. 6, p. 973 | DOI:10.1016/j.optmat.2011.05.014
  • C. Li; W. Liu; H. Gao; B. Jiang; Y. Wang; H. Kou; Y. Shen; Y. Pan; Y. Bo; Q. Peng; D. Cui; D. Jiang; Z. Xu Scattering effect and laser performance for the Nd:YAG transparent ceramics, Applied Physics B, Volume 104 (2011) no. 3, p. 625 | DOI:10.1007/s00340-011-4486-3
  • S. G. Garanin; A. V. Dmitryuk; M. D. Mikhaĭlov; A. A. Zhilin; N. N. Rukavishnikov Laser ceramic 2 Spectroscopic and lasing properties, Journal of Optical Technology, Volume 78 (2011) no. 6, p. 393 | DOI:10.1364/jot.78.000393
  • Xiaolin ZHANG; Duo LIU; Hong LIU; Jiyang WANG; Haiming QIN; Yuanhua SANG Microstructural characteristics of Nd:YAG powders leading to transparent ceramics, Journal of Rare Earths, Volume 29 (2011) no. 6, p. 585 | DOI:10.1016/s1002-0721(10)60502-9
  • Y. Tang; X. Y. Zhang; Q. P. Wang; W. T. Wang; Z. G. Wu; L. Li; X. L. Zhang; Y. G. Zhang; Z. J. Liu; X. H. Chen; S. Z. Fan High-efficiency diode-pumped acousto-optically Q-switched 1123 nm ceramic Nd:YAG laser, Laser Physics, Volume 21 (2011) no. 4, p. 695 | DOI:10.1134/s1054660x11070280
  • Yuepeng Song; Jiangtao Li; Yixiang Chen; Wenwen Ji; Chong Soo Lee; Hyoung Seop Kim Microstructural Aspects during the Preparation of Y3Al5O12 by Combustion Synthesis and Temperature Field Simulation, MATERIALS TRANSACTIONS, Volume 52 (2011) no. 4, p. 685 | DOI:10.2320/matertrans.m2010295
  • Takunori Taira Domain-controlled laser ceramics toward Giant Micro-photonics [Invited], Optical Materials Express, Volume 1 (2011) no. 5, p. 1040 | DOI:10.1364/ome.1.001040
  • Paola Palmero, 12th INTERNATIONAL CERAMICS CONGRESS PART A, Volume 62 (2010), p. 34 | DOI:10.4028/www.scientific.net/ast.62.34
  • Sharone Goldring; Raphael Lavi; Voicu Lupei Decay Dynamics of Excited Nd+3 Ions in Nd:YVO4 Following Weak Excitation, IEEE Journal of Quantum Electronics, Volume 46 (2010) no. 2, p. 169 | DOI:10.1109/jqe.2009.2031614
  • Triplicane A. Parthasarathy Predicted performance limits of yttrium aluminum garnet fiber lasers, Optical Engineering, Volume 49 (2010) no. 9, p. 094302 | DOI:10.1117/1.3485758
  • Qing-Lei Ma; Yong Bo; Nan Zong; Qin-Jun Peng; Da-Fu Cui; Yu-Bai Pan; Zu-Yan Xu 108 W Nd: YAG ceramic laser with birefringence compensation resonator, Optics Communications, Volume 283 (2010) no. 24, p. 5183 | DOI:10.1016/j.optcom.2010.08.019
  • Inon Moshe; Steven Jackel; Yaakov Lumer; Avi Meir; Revital Feldman; Yehoshua Shimony Use of polycrystalline Nd:YAG rods to achieve pure radially or azimuthally polarized beams from high-average-power lasers, Optics Letters, Volume 35 (2010) no. 15, p. 2511 | DOI:10.1364/ol.35.002511
  • François Baril-Robert; Zhonghua Guo; Howard H. Patterson Study of the energy transfer process in the highly luminescent heterometallic dimers of Ce3+ and d10 [Ag(CN)2]− or d8 [Pt(CN)4]2− ions, Chemical Physics Letters, Volume 471 (2009) no. 4-6, p. 258 | DOI:10.1016/j.cplett.2009.02.039
  • Zong Nan; Zhang Xiao-Fu; Ma Qing-Lei; Wang Bao-Shan; Cui Da-Fu; Peng Qin-Jun; Xu Zu-Yan; Pan Yu-Bai; Feng Xi-Qi Comparison of Nd:YAG Ceramic Laser Pumped at 885 nm and 808 nm, Chinese Physics Letters, Volume 26 (2009) no. 5, p. 054211 | DOI:10.1088/0256-307x/26/5/054211
  • Jieqiang Wang; Shaohua Zheng; Rong Zeng; Shixue Dou; Xudong Sun Microwave Synthesis of Homogeneous YAG Nanopowder Leading to a Transparent Ceramic, Journal of the American Ceramic Society, Volume 92 (2009) no. 6, p. 1217 | DOI:10.1111/j.1551-2916.2009.03086.x
  • L. Grigorjeva; D. Millers; A. Kalinko; V. Pankratov; K. Smits Time-resolved cathodoluminescence and photoluminescence of nanoscale oxides, Journal of the European Ceramic Society, Volume 29 (2009) no. 2, p. 255 | DOI:10.1016/j.jeurceramsoc.2008.03.037
  • P. Aubry; A. Bensalah; P. Gredin; G. Patriarche; D. Vivien; M. Mortier Synthesis and optical characterizations of Yb-doped CaF2 ceramics, Optical Materials, Volume 31 (2009) no. 5, p. 750 | DOI:10.1016/j.optmat.2008.03.022
  • Takunori TAIRA Micro Solid-State Photonics - Review, The Review of Laser Engineering, Volume 37 (2009) no. 4, p. 227 | DOI:10.2184/lsj.37.227
  • Jiang Ben-Xue; Huang Tong-De; Wu Yu-Song; Liu Wen-Bin; Pan Yu-Bai; Feng Tao; Yang Qiu-Hong Comparative spectroscopic investigation of Yb-doped YAG, YSAG and YLaO 3 transparent ceramics, Chinese Physics B, Volume 17 (2008) no. 9, p. 3407 | DOI:10.1088/1674-1056/17/9/043
  • Michael Veith New synthetic routes to nano-composites with ceramic particles, using lanthanide compounds, Journal of Sol-Gel Science and Technology, Volume 46 (2008) no. 3, p. 291 | DOI:10.1007/s10971-008-1692-5
  • Takunori Taira RE3+-Ion-Doped YAG Ceramic Lasers, IEEE Journal of Selected Topics in Quantum Electronics, Volume 13 (2007) no. 3, p. 798 | DOI:10.1109/jstqe.2007.897174

Cité par 67 documents. Sources : Crossref

Commentaires - Politique