[Les lasers à céramiques YAG]
Les matériaux lasers polycristallins transparents, ou « céramiques », offrent de nombreux avantages sur ceux élaborés par fusion, notamment des temps de production plus courts, l'accès à des solutions solides permettant la fabrication de matériaux à transition de phase multiple, une très grande homogénéité et la possibilité de définir des profils et des structures avant frittage. La qualité optique des céramiques a beaucoup progressé et de nouveaux matériaux ont été explorés. Le développement des céramiques concentrées Nd :YAG a ouvert la voie à une réduction drastique de la production de chaleur grâce au pompage direct sur le niveau supérieur. Ceci est particulièrement intéressant pour la fabrication de structures composites du fait de faibles coûts de fabrication liés à la production de masse et de délais de production courts, en comparaison du soudage par diffusion conventionnel. Ce travail décrit un laser émettant plus de 300 W en continu, basé sur une micropuce composite monocristal Yb :YAG/céramique YAG pompée par le côté. Nous discutons aussi des développements futurs, en particulier l'adaptation du profil spectral.
Transparent polycrystalline that is ‘ceramic’ laser materials offer numerous advantages over melt growth methods, including faster production times, their solid solution allows the fabrication of multi-phase transition materials that are highly homogeneous and they show the ability to engineer profiles and structures before sintering. Much progress has been made in improving the optical quality of ceramics, as well as exploring new laser materials. Successfully developed concentrated Nd:YAG ceramics has opened the way for drastic heat reduction by pumping directly into the upper laser level. Especially for the composite structure fabrication, it is attractive because of low fabrication costs by mass production and short delivery times compared with conventional diffusion bonding. In this research, we report on
Mots-clés : Céramique Nd :YAG, Laser continu, Yb :YAG/céramique YAG
Takunori Taira 1
@article{CRPHYS_2007__8_2_138_0, author = {Takunori Taira}, title = {Ceramic {YAG} lasers}, journal = {Comptes Rendus. Physique}, pages = {138--152}, publisher = {Elsevier}, volume = {8}, number = {2}, year = {2007}, doi = {10.1016/j.crhy.2006.08.002}, language = {en}, }
Takunori Taira. Ceramic YAG lasers. Comptes Rendus. Physique, Recent advances in crystal optics, Volume 8 (2007) no. 2, pp. 138-152. doi : 10.1016/j.crhy.2006.08.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.08.002/
[1] Diode pumped solid-state lasers, Science, Volume 239 (1988), pp. 742-747
[2] Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers, Opt. Lett., Volume 16 (1991), pp. 1955-1957
[3] Ytterbium-doped apatite-structure crystals: A new class of laser materials, J. Appl. Phys., Volume 76 (1994), pp. 497-503
[4] Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers, J. Am. Ceram. Soc., Volume 78 (1995), pp. 1033-1040
[5] Diode-pumped Nd:YAG ceramics lasers, OSA TOPS on Advanced Solid-State Lasers, Volume 19 (1998), pp. 430-432
[6] Highly trivalent neodymium ion doped YAG ceramic for microchip lasers, OSA TOPS on Advanced Solid-State Lasers, Volume 26 (1999), pp. 212-215
[7] High-power Nd:Y3Al5O12 ceramic laser, Jpn. J. Appl. Phys., Volume 39 (2000), p. L1048-L1050
[8] Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4, Appl. Phys. B, Volume 58 (1994), pp. 373-379
[9] Single-transverse-mode LiNdP4O12 slab waveguide laser, J. Appl. Phys., Volume 50 (1979), pp. 653-659
[10] Effective cross section of the Nd:YAG 1.0641-μm laser transition, J. Appl. Phys., Volume 62 (1987), pp. 4041-4044
[11] Analysis of the ground term energy levels for triply ionized neodymium in yttrium orthovanadate, J. Chem. Phys., Volume 62 (1975), pp. 4125-4129
[12] Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4, J. Opt. Soc. Am., Volume 66 (1976), pp. 1405-1414
[13] Optical-absorption intensities of trivalent neodymium in the uniaxial yttrium orthovanadate, J. Appl. Phys., Volume 49 (1978), pp. 5517-5522
[14] Stimulated emission cross sections of Nd:YVO4 and Nd:La2Be2O5 (BeL), J. Appl. Phys., Volume 52 (1981), pp. 3067-3068
[15] Efficient Cr3+ sensitized Nd3+:GdScGa-garnet laser at 1.064 μm, Appl. Phys. B, Volume 28 (1982), pp. 355-358
[16] Lasing and spectroscopic characteristics of a new Nd laser crystal-strontium fluorovanadate, OSA Proceeding on Advanced Solid-State Lasers, Volume 20 (1994), pp. 32-36
[17] Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm, Opt. Commun., Volume 205 (2002), pp. 361-365
[18] Spectral parameters of Nd3+-ion in the polycrystalline solid-solution composed of Y3Al5O12 and Y3Sc2Al3O12, Jpn. J. Appl. Phys., Volume 42 (2003), pp. 5071-5074
[19] Highly efficient Nd:YVO4 diode-laser end-pumped laser, Appl. Phys. Lett., Volume 51 (1987), pp. 1885-1886
[20] Single-mode 1.34-μm Nd:YVO4 microchip laser with cw Ti:sapphire and diode-laser pumping, Opt. Lett., Volume 19 (1994), pp. 957-959
[21] The Physics and Engineering of Solid-State Lasers, SPIE Press, Bellingham, 2006 (p. 159)
[22] Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics, Appl. Phys. Lett., Volume 77 (2000), pp. 939-941
[23] Ceramic lasers, IEICE Transactions C, Volume J84-C (2001), pp. 918-925 (in Japanese)
[24] Solid-State Laser Engineering, Springer-Verlag, Berlin, 1999 (p. 412)
[25] Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers, IEEE J. Quantum Electron. QE-33 (1997), pp. 861-873
[26] Single-frequency microchip Nd lasers, Opt. Lett., Volume 14 (1989), pp. 24-26
[27] T. Taira, A. Ikesue, K. Yoshida, Performance of highly Nd3+-doped YAG ceramic microchip laser, in: Conference on Lasers and Electro-Optics CLEO '99, CTuK39, 1999, pp. 136–137
[28] Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level, IEEE J. Quantum Electron. QE-38 (2002), pp. 240-245
[29] Thermal-birefringence-induced depolarization in Nd:YAG ceramics, Opt. Lett., Volume 27 (2002), pp. 234-236
[30] Effect of birefringence on the performance of linearly polarized YAG:Nd lasers, IEEE J. Quantum Electron. QE-6 (1970), pp. 556-557
[31] Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal, Appl. Phys. Lett., Volume 80 (2002), pp. 3048-3050
[32] Heat generation in Nd:YAG and Yb:YAG, IEEE J. Quantum Electron. QE-29 (1993), pp. 1457-1459
[33] Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics, Opt. Commun., Volume 195 (2001), pp. 225-232
[34] Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics, Appl. Phys. Lett., Volume 79 (2001), pp. 590-592
[35] Thermally boosted pumping of neodymium lasers, Appl. Opt., Volume 39 (2000), pp. 3093-3098
[36] The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics, Phys. Rev. B, Volume 64 (2001), p. 092102
[37] Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the one-micron continuous-wave Nd:Y3 Al5O12 laser emission, Appl. Phys. Lett., Volume 83 (2003), pp. 3653-3655
[38] Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level, Appl. Phys. Lett., Volume 82 (2003), pp. 844-846
[39] Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4, Opt. Lett., Volume 28 (2003), pp. 2366-2368
[40] Room-temperature diode-pumped Yb:YAG laser, Opt. Lett., Volume 14 (1991), pp. 1089-1091
[41] Modeling of quasi-three-level lasers and operation of CW Yb:YAG lasers, Appl. Opt., Volume 36 (1997), pp. 1867-1874
[42] Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm, Opt. Lett., Volume 20 (1995), pp. 713-715
[43] Tunable frequency-doubled Yb:YAG microchip lasers, Opt. Mat., Volume 34 (2000), pp. 106-111
[44] 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser, Opt. Lett., Volume 28 (2003), pp. 367-369
[45] A 1-kW CW thin disc laser, IEEE J. Selected Topics in Quantum Electron., Volume 6 (2000), pp. 650-657
[46] Radial-pumped microchip high-power composite Yb:YAG laser: design and power characteristics, Jpn. J. Appl. Phys., Volume 40 (2001), pp. 146-152
[47] 90 W continuous-wave diode edge-pumped microchip composite Yb:Y3Al5O12 laser, Appl. Phys. Lett., Volume 83 (2003), pp. 4086-4088
[48] 300 W continuous-wave operation of diode edge-pumped, hybrid composite Yb:YAG microchip laser, Opt. Lett., Volume 31 (2006), pp. 2003-2005
[49] Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser, Appl. Phys. Lett., Volume 85 (2004), pp. 5845-5847
- Beyond Scanning Electron Microscopy: Comprehensive Pore Analysis in Transparent Ceramics Using Optical Microscopy, Ceramics, Volume 7 (2024) no. 1, p. 401 | DOI:10.3390/ceramics7010025
- Fluoride transparent ceramics for solid-state lasers: A review, Journal of Advanced Ceramics, Volume 13 (2024) no. 12, p. 1891 | DOI:10.26599/jac.2024.9220986
- Advances in and Future Perspectives on High-Power Ceramic Lasers, Photonics, Volume 11 (2024) no. 10, p. 942 | DOI:10.3390/photonics11100942
- Yttrium aluminum garnet analyzed by x-ray photoelectron spectroscopy, Surface Science Spectra, Volume 31 (2024) no. 1 | DOI:10.1116/6.0003128
- Fabrication and optical properties of YSAG:Cr optical ceramics, Ceramics International, Volume 49 (2023) no. 19, p. 32127 | DOI:10.1016/j.ceramint.2023.07.181
- Optical and luminescent properties of quasi-stoichiometric YAG: Cr3+ ceramics, Journal of the European Ceramic Society, Volume 43 (2023) no. 15, p. 7085 | DOI:10.1016/j.jeurceramsoc.2023.07.058
- Decay kinetics in single crystals and ceramics based on yttrium aluminum garnet doped with rare earth ions, Journal of Luminescence, Volume 251 (2022), p. 119228 | DOI:10.1016/j.jlumin.2022.119228
- Evidence of two Yb3+ crystallographic sites occupancy in Y3Al5O12 ceramics from an in depth spectroscopic analysis, Journal of Solid State Chemistry, Volume 316 (2022), p. 123577 | DOI:10.1016/j.jssc.2022.123577
- Progress and perspectives on composite laser ceramics: A review, Journal of the European Ceramic Society, Volume 42 (2022) no. 5, p. 1833 | DOI:10.1016/j.jeurceramsoc.2021.12.061
- Ceramics for Laser Technologies, Encyclopedia of Materials: Technical Ceramics and Glasses (2021), p. 110 | DOI:10.1016/b978-0-12-803581-8.11779-5
- Co-precipitation synthesis of highly sinterable Yb:Sr5(PO4)3F powder for transparent ceramics, Ceramics International, Volume 46 (2020) no. 10, p. 14391 | DOI:10.1016/j.ceramint.2020.02.234
- Polarization-resolved Er emission in Er doped GaN bulk crystals, Journal of Applied Physics, Volume 127 (2020) no. 24 | DOI:10.1063/5.0012969
- Optical properties of GaN/Er:GaN/GaN core–cladding planar waveguides, Applied Physics Express, Volume 12 (2019) no. 7, p. 075505 | DOI:10.7567/1882-0786/ab2730
- Growth and fabrication of GaN/Er:GaN/GaN core-cladding planar waveguides, Applied Physics Letters, Volume 114 (2019) no. 22 | DOI:10.1063/1.5093942
- Structural, microstructural, and luminescent properties of laser-sintered Eu-doped YAG ceramics, Optical Materials, Volume 89 (2019), p. 334 | DOI:10.1016/j.optmat.2019.01.038
- Energy transfer between Ce and Sm co-doped YAG nanocrystals for white light emitting devices, Results in Physics, Volume 12 (2019), p. 1777 | DOI:10.1016/j.rinp.2019.01.093
- Resonant excitation cross-sections of erbium in freestanding GaN bulk crystals, Applied Physics Letters, Volume 112 (2018) no. 20 | DOI:10.1063/1.5030347
- Composite Laser Ceramics by Advanced Bonding Technology, Materials, Volume 11 (2018) no. 2, p. 271 | DOI:10.3390/ma11020271
- Toward the realization of erbium-doped GaN bulk crystals as a gain medium for high energy lasers, Applied Physics Letters, Volume 109 (2016) no. 5 | DOI:10.1063/1.4960360
- Optical properties of undoped NdTaO 4 , ErTaO 4 and YbTaO 4 ceramics, Journal of Luminescence, Volume 179 (2016), p. 146 | DOI:10.1016/j.jlumin.2016.06.054
- Compact linearly polarized ceramic laser made with anisotropic nanostructured thin films, Applied Optics, Volume 54 (2015) no. 28, p. 8326 | DOI:10.1364/ao.54.008326
- Effect of Tm2O3 doping on microstructure and optical properties of Tm:YAG ceramics, Ceramics International, Volume 41 (2015) no. 7, p. 9051 | DOI:10.1016/j.ceramint.2015.03.277
- Fabrication and optical studies of transparent Tm, Ho:YAG ceramics, Optical Materials, Volume 50 (2015), p. 52 | DOI:10.1016/j.optmat.2015.06.005
- Comprehensive study of photoluminescence and cathodoluminescence of YAG:Eu3+ nano- and microceramics, Optical Materials, Volume 50 (2015), p. 59 | DOI:10.1016/j.optmat.2015.06.042
- Continuous-wave laser performance of non-aqueous tape casting fabricated Yb:YAG ceramics, Optical Materials Express, Volume 5 (2015) no. 2, p. 330 | DOI:10.1364/ome.5.000330
- Erbium doped GaN synthesized by hydride vapor-phase epitaxy, Optical Materials Express, Volume 5 (2015) no. 3, p. 596 | DOI:10.1364/ome.5.000596
- Precipitation of Tm2O3 nanopowders for application in reactive sintering of Tm:YAG, Ceramics International, Volume 40 (2014) no. 7, p. 10269 | DOI:10.1016/j.ceramint.2014.02.117
- Crystallization behaviour of Yb-doped and undoped YAG nanoceramics synthesized by microwave-assisted urea precipitation, Ceramics International, Volume 40 (2014) no. 8, p. 11837 | DOI:10.1016/j.ceramint.2014.04.018
- Solid-state reactive sintering of YAG transparent ceramics for optical applications, Journal of Alloys and Compounds, Volume 616 (2014), p. 81 | DOI:10.1016/j.jallcom.2014.06.013
- Crystal growth, characterization of NdTaO4: A new promising stoichiometric neodymium laser material, Journal of Crystal Growth, Volume 388 (2014), p. 83 | DOI:10.1016/j.jcrysgro.2013.10.030
- Fabrication and properties of highly transparent Nd-doped CaF2 ceramics, Materials Letters, Volume 115 (2014), p. 162 | DOI:10.1016/j.matlet.2013.05.055
- Y3−x(Al0·9In0·1)5O12:Eu: preparation, structure effect on luminescent properties, Materials Research Innovations, Volume 18 (2014) no. sup2, p. S2-167 | DOI:10.1179/1432891714z.000000000393
- Spectroscopy and Optical Properties of Sm3+:YAG Nanocrystalline Powder Prepared by Co-Precipitation Method: Effect of Sm3+ Ions Concentrations, Open Journal of Applied Sciences, Volume 04 (2014) no. 03, p. 96 | DOI:10.4236/ojapps.2014.43011
- Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser, Optical Materials Express, Volume 4 (2014) no. 5, p. 1042 | DOI:10.1364/ome.4.001042
- Continuous-wave and Q-switched operation of a resonantly pumped polycrystalline ceramic Ho:LuAG laser, Optics Express, Volume 22 (2014) no. 16, p. 19014 | DOI:10.1364/oe.22.019014
- The Effect of Precipitate Agent in Co-Precipitation Synthesis Y3Al5O12 and Y3Fe5O12 Powders, Advanced Materials Research, Volume 750-752 (2013), p. 479 | DOI:10.4028/www.scientific.net/amr.750-752.479
- System sizing issues with diode-pumped quasi-three-level materials, Handbook of Solid-State Lasers (2013), p. 283 | DOI:10.1533/9780857097507.2.283
- Oxide laser ceramics, Handbook of Solid-State Lasers (2013), p. 54 | DOI:10.1533/9780857097507.1.54
- Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye‐Safe Solid‐State Lasers“, International Journal of Applied Ceramic Technology, Volume 10 (2013) no. 1, p. 123 | DOI:10.1111/j.1744-7402.2011.02732.x
- High Power Lasers in Material Processing Applications: An Overview of Recent Developments, Laser-Assisted Fabrication of Materials, Volume 161 (2013), p. 69 | DOI:10.1007/978-3-642-28359-8_2
- Synthesis of Yb3+ doped Sr5(PO4)3F nanoparticles through co-precipitation, Materials Letters, Volume 107 (2013), p. 68 | DOI:10.1016/j.matlet.2013.05.111
- Preparation and characterization of Yb-doped YAG ceramics, Optical Materials, Volume 35 (2013) no. 4, p. 798 | DOI:10.1016/j.optmat.2012.05.028
- Dual-polarization electro-optical Q-switched ceramic laser, Optik - International Journal for Light and Electron Optics, Volume 124 (2013) no. 18, p. 3457 | DOI:10.1016/j.ijleo.2012.10.021
- The effect of precipitant on co-precipitation synthesis of yttrium aluminum garnet powders, Ceramics International, Volume 38 (2012) no. 8, p. 6951 | DOI:10.1016/j.ceramint.2012.05.066
- Effect of La2O3 on microstructures and laser properties of Nd:YAG ceramics, Journal of Alloys and Compounds, Volume 512 (2012) no. 1, p. 1 | DOI:10.1016/j.jallcom.2011.09.038
- Influence of Yb and Si content on the sintering and phase changes of Yb:YAG laser ceramics, Journal of the European Ceramic Society, Volume 32 (2012) no. 11, p. 2949 | DOI:10.1016/j.jeurceramsoc.2012.02.045
- Fabrication and properties of highly transparent Er:YAG ceramics, Optical Materials, Volume 34 (2012) no. 6, p. 973 | DOI:10.1016/j.optmat.2011.05.014
- Scattering effect and laser performance for the Nd:YAG transparent ceramics, Applied Physics B, Volume 104 (2011) no. 3, p. 625 | DOI:10.1007/s00340-011-4486-3
- Laser ceramic 2 Spectroscopic and lasing properties, Journal of Optical Technology, Volume 78 (2011) no. 6, p. 393 | DOI:10.1364/jot.78.000393
- Microstructural characteristics of Nd:YAG powders leading to transparent ceramics, Journal of Rare Earths, Volume 29 (2011) no. 6, p. 585 | DOI:10.1016/s1002-0721(10)60502-9
- High-efficiency diode-pumped acousto-optically Q-switched 1123 nm ceramic Nd:YAG laser, Laser Physics, Volume 21 (2011) no. 4, p. 695 | DOI:10.1134/s1054660x11070280
- Microstructural Aspects during the Preparation of Y3Al5O12 by Combustion Synthesis and Temperature Field Simulation, MATERIALS TRANSACTIONS, Volume 52 (2011) no. 4, p. 685 | DOI:10.2320/matertrans.m2010295
- Domain-controlled laser ceramics toward Giant Micro-photonics [Invited], Optical Materials Express, Volume 1 (2011) no. 5, p. 1040 | DOI:10.1364/ome.1.001040
- , 12th INTERNATIONAL CERAMICS CONGRESS PART A, Volume 62 (2010), p. 34 | DOI:10.4028/www.scientific.net/ast.62.34
- Decay Dynamics of Excited Nd
Ions in Nd:YVO Following Weak Excitation, IEEE Journal of Quantum Electronics, Volume 46 (2010) no. 2, p. 169 | DOI:10.1109/jqe.2009.2031614 - Predicted performance limits of yttrium aluminum garnet fiber lasers, Optical Engineering, Volume 49 (2010) no. 9, p. 094302 | DOI:10.1117/1.3485758
- 108 W Nd: YAG ceramic laser with birefringence compensation resonator, Optics Communications, Volume 283 (2010) no. 24, p. 5183 | DOI:10.1016/j.optcom.2010.08.019
- Use of polycrystalline Nd:YAG rods to achieve pure radially or azimuthally polarized beams from high-average-power lasers, Optics Letters, Volume 35 (2010) no. 15, p. 2511 | DOI:10.1364/ol.35.002511
- Study of the energy transfer process in the highly luminescent heterometallic dimers of Ce3+ and d10 [Ag(CN)2]− or d8 [Pt(CN)4]2− ions, Chemical Physics Letters, Volume 471 (2009) no. 4-6, p. 258 | DOI:10.1016/j.cplett.2009.02.039
- Comparison of Nd:YAG Ceramic Laser Pumped at 885 nm and 808 nm, Chinese Physics Letters, Volume 26 (2009) no. 5, p. 054211 | DOI:10.1088/0256-307x/26/5/054211
- Microwave Synthesis of Homogeneous YAG Nanopowder Leading to a Transparent Ceramic, Journal of the American Ceramic Society, Volume 92 (2009) no. 6, p. 1217 | DOI:10.1111/j.1551-2916.2009.03086.x
- Time-resolved cathodoluminescence and photoluminescence of nanoscale oxides, Journal of the European Ceramic Society, Volume 29 (2009) no. 2, p. 255 | DOI:10.1016/j.jeurceramsoc.2008.03.037
- Synthesis and optical characterizations of Yb-doped CaF2 ceramics, Optical Materials, Volume 31 (2009) no. 5, p. 750 | DOI:10.1016/j.optmat.2008.03.022
- Micro Solid-State Photonics - Review, The Review of Laser Engineering, Volume 37 (2009) no. 4, p. 227 | DOI:10.2184/lsj.37.227
- Comparative spectroscopic investigation of Yb-doped YAG, YSAG and YLaO 3 transparent ceramics, Chinese Physics B, Volume 17 (2008) no. 9, p. 3407 | DOI:10.1088/1674-1056/17/9/043
- New synthetic routes to nano-composites with ceramic particles, using lanthanide compounds, Journal of Sol-Gel Science and Technology, Volume 46 (2008) no. 3, p. 291 | DOI:10.1007/s10971-008-1692-5
- RE
-Ion-Doped YAG Ceramic Lasers, IEEE Journal of Selected Topics in Quantum Electronics, Volume 13 (2007) no. 3, p. 798 | DOI:10.1109/jstqe.2007.897174
Cité par 67 documents. Sources : Crossref
Commentaires - Politique