[Frittage et propretés mécaniques de fluorapatites substituées au magnésium]
Des fluorapatites substituées au magnésium et non substituées, préparées par précipitation, ont été frittées entre 900 et 1300 °C. Les résultats obtenus montrent que ces matériaux présentent une bonne aptitude au frittage. Pour la fluorapatite pure, une densité relative de l'ordre de
Fluorapatite and magnesium-substituted fluorapatite powders synthesized by the precipitation method were pressureless sintered in the range 900–1300 °C. The results showed that both materials exhibited a good sinterability. Concerning fluorapatite, a relative density of about 97% was attained at 1050 °C for 1 h. Although the incorporation of Mg into the apatite framework induced a slight decrease in the density, the substituted samples presented slightly higher mechanical properties. The maximum values of flexural strength, fracture toughness, hardness and Young's modulus of these latter samples were about
Accepté le :
Publié le :
Mots-clés : Frittage, Propriétés mécaniques, Biomatériaux
Mustapha Hidouri 1 ; Khaled Boughzala 1 ; Jean Pierre Lecompte 2 ; Khaled Bouzouita 1
@article{CRPHYS_2009__10_2-3_242_0, author = {Mustapha Hidouri and Khaled Boughzala and Jean Pierre Lecompte and Khaled Bouzouita}, title = {Sintering and mechanical properties of magnesium-containing fluorapatite}, journal = {Comptes Rendus. Physique}, pages = {242--248}, publisher = {Elsevier}, volume = {10}, number = {2-3}, year = {2009}, doi = {10.1016/j.crhy.2009.04.001}, language = {en}, }
TY - JOUR AU - Mustapha Hidouri AU - Khaled Boughzala AU - Jean Pierre Lecompte AU - Khaled Bouzouita TI - Sintering and mechanical properties of magnesium-containing fluorapatite JO - Comptes Rendus. Physique PY - 2009 SP - 242 EP - 248 VL - 10 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2009.04.001 LA - en ID - CRPHYS_2009__10_2-3_242_0 ER -
%0 Journal Article %A Mustapha Hidouri %A Khaled Boughzala %A Jean Pierre Lecompte %A Khaled Bouzouita %T Sintering and mechanical properties of magnesium-containing fluorapatite %J Comptes Rendus. Physique %D 2009 %P 242-248 %V 10 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2009.04.001 %G en %F CRPHYS_2009__10_2-3_242_0
Mustapha Hidouri; Khaled Boughzala; Jean Pierre Lecompte; Khaled Bouzouita. Sintering and mechanical properties of magnesium-containing fluorapatite. Comptes Rendus. Physique, Laser acceleration of particles in plasma, Volume 10 (2009) no. 2-3, pp. 242-248. doi : 10.1016/j.crhy.2009.04.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.04.001/
[1] J. Mater. Sci., 16 (1981), pp. 809-812
[2] J. Mater. Sci., 16 (1981), pp. 1592-1598
[3] J. Mater. Sci.: Mater. Med., 5 (1994), pp. 563-568
[4] J. Mater. Sci.: Mater. Med., 6 (1995), pp. 8-13
[5] Z. Naturforchung, 38b (1983), pp. 1037-1040
[6] Physicochimie et cristallographie des apatites d'intérêt biologique, Editions du CNRS, Paris, 1975
[7] Biological Mineralisation and Demineralisation (G.H. Nancollas, ed.), Springer-Verlag, Berlin, 1982
[8] Structure and Chemistry of the Apatites and Other Related Calcium Orthophosphates, Elsevier, Amsterdam, 1994
[9] Indian J. Chem., 10 (1972), pp. 308-309
[10] J. Alloys Compd., 322 (2001) no. 1–2, pp. 238-245
[11] Biomaterials, 25 (2004), pp. 1385-1394
[12] Biomaterials, 25 (2004), pp. 1395-1405
[13] J. Non-Cryst. Solids, 336 (2004), pp. 223-229
[14] J. Solid State Chem., 112 (1994), pp. 78-81
[15] J. Solid State Chem., 179 (2006), pp. 3065-3072
[16] Calcium Phosphates in Oral Biology and Medicine (H.M. Myers, ed.), Krager, New York, 1991
[17] Mater. Chem. Phys., 80 (2003), pp. 496-505
[18] Détermination des propriétés de rupture fragile des matériaux céramiques : Application au cas de l'alumine, Mémoire d'Ingénieur, CNAM, Limoges, France, 1981
[19] J. Am. Ceram. Soc., 59 (1976), pp. 371-372
[20] Solid State Ionics, 101–103 (1997), pp. 1357-1362
[21] Introduction to Ceramics, Wiley and Sons, New York, 1976
[22] Microstructure dependence of mechanical behaviour (R.K. Mac, ed.), Treatise on Materials Science and Technology, Academic Press, New York, 1977
[23] Biomaterials, 20 (1999), pp. 2085-2090
[24] J. Mater. Sci., 31 (1996), pp. 1969-1983
- Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents, Journal of Photochemistry and Photobiology B: Biology, Volume 239 (2023), p. 112649 | DOI:10.1016/j.jphotobiol.2023.112649
- Thermal and structural properties of sodium, potassium and carbonate doped strontium hydroxyfluorapatite, Journal of the Indian Chemical Society, Volume 99 (2022) no. 6, p. 100475 | DOI:10.1016/j.jics.2022.100475
- Ion-doped hydroxyapatite: An impasse or the road to follow?, Ceramics International, Volume 46 (2020) no. 8, p. 11443 | DOI:10.1016/j.ceramint.2020.02.001
- Thermal Behavior, Sintering and Mechanical Characterization of Multiple Ion-Substituted Hydroxyapatite Bioceramics, Journal of Inorganic and Organometallic Polymers and Materials, Volume 29 (2019) no. 1, p. 87 | DOI:10.1007/s10904-018-0969-6
- Effect of alumina contents on phase stability and mechanical properties of magnesium fluorapatite/alumina composites, Journal of the Mechanical Behavior of Biomedical Materials, Volume 40 (2014), p. 95 | DOI:10.1016/j.jmbbm.2014.08.004
- Sintering and Mechanical Properties of Magnesium and Fluorine Co-Substituted Hydroxyapatites, Journal of Biomaterials and Nanobiotechnology, Volume 04 (2013) no. 01, p. 1 | DOI:10.4236/jbnb.2013.41001
- Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses, Acta Biomaterialia, Volume 7 (2011) no. 11, p. 4071 | DOI:10.1016/j.actbio.2011.06.047
- Sintering Behavior of Magnesium-Substituted Fluorapatite Powders Prepared by Hydrothermal Method, Bioinorganic Chemistry and Applications, Volume 2011 (2011), p. 1 | DOI:10.1155/2011/453759
Cité par 8 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier