Comptes Rendus
Physics/Solids, fluids: mechanical and thermal properties
Sintering and mechanical properties of magnesium-containing fluorapatite
[Frittage et propretés mécaniques de fluorapatites substituées au magnésium]
Comptes Rendus. Physique, Laser acceleration of particles in plasma, Volume 10 (2009) no. 2-3, pp. 242-248.

Des fluorapatites substituées au magnésium et non substituées, préparées par précipitation, ont été frittées entre 900 et 1300 °C. Les résultats obtenus montrent que ces matériaux présentent une bonne aptitude au frittage. Pour la fluorapatite pure, une densité relative de l'ordre de 97% a été obtenue après un traitement thermique à 1050 °C pendant 1 h. Bien que l'incorporation de Mg dans la structure apatitique induise une légère diminution de la densité, les échantillons substitués présentent une légère amélioration de propriétés mécaniques. Les valeurs maximales de résistance à la rupture, ténacité, dureté et module d'Young de ces derniers matériaux sont respectivement de l'ordre 50,8±4,0MPa, 1,36±0,10MPam1/2, 121,9±2,4MPa and 650±8Hv.

Fluorapatite and magnesium-substituted fluorapatite powders synthesized by the precipitation method were pressureless sintered in the range 900–1300 °C. The results showed that both materials exhibited a good sinterability. Concerning fluorapatite, a relative density of about 97% was attained at 1050 °C for 1 h. Although the incorporation of Mg into the apatite framework induced a slight decrease in the density, the substituted samples presented slightly higher mechanical properties. The maximum values of flexural strength, fracture toughness, hardness and Young's modulus of these latter samples were about 50.8±4.0MPa, 1.36±0.10MPam1/2, 121.9±2.4MPa and 650±8Hv, respectively.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crhy.2009.04.001
Keywords: Sintering, Mechanical properties, Biomaterials
Mots-clés : Frittage, Propriétés mécaniques, Biomatériaux

Mustapha Hidouri 1 ; Khaled Boughzala 1 ; Jean Pierre Lecompte 2 ; Khaled Bouzouita 1

1 Unité de recherche : matériaux inorganiques, Institut préparatoire aux études d'ingénieur de Monastir, avenue Ibn Eljazzar, 5019 Monastir, Tunisia
2 École nationale supérieure d'ingénieurs de Limoges, 16, rue d'Atlantis, parc d'ester technopole, 87068 Limoges cedex, France
@article{CRPHYS_2009__10_2-3_242_0,
     author = {Mustapha Hidouri and Khaled Boughzala and Jean Pierre Lecompte and Khaled Bouzouita},
     title = {Sintering and mechanical properties of magnesium-containing fluorapatite},
     journal = {Comptes Rendus. Physique},
     pages = {242--248},
     publisher = {Elsevier},
     volume = {10},
     number = {2-3},
     year = {2009},
     doi = {10.1016/j.crhy.2009.04.001},
     language = {en},
}
TY  - JOUR
AU  - Mustapha Hidouri
AU  - Khaled Boughzala
AU  - Jean Pierre Lecompte
AU  - Khaled Bouzouita
TI  - Sintering and mechanical properties of magnesium-containing fluorapatite
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 242
EP  - 248
VL  - 10
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.04.001
LA  - en
ID  - CRPHYS_2009__10_2-3_242_0
ER  - 
%0 Journal Article
%A Mustapha Hidouri
%A Khaled Boughzala
%A Jean Pierre Lecompte
%A Khaled Bouzouita
%T Sintering and mechanical properties of magnesium-containing fluorapatite
%J Comptes Rendus. Physique
%D 2009
%P 242-248
%V 10
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2009.04.001
%G en
%F CRPHYS_2009__10_2-3_242_0
Mustapha Hidouri; Khaled Boughzala; Jean Pierre Lecompte; Khaled Bouzouita. Sintering and mechanical properties of magnesium-containing fluorapatite. Comptes Rendus. Physique, Laser acceleration of particles in plasma, Volume 10 (2009) no. 2-3, pp. 242-248. doi : 10.1016/j.crhy.2009.04.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.04.001/

[1] M. Akao; H. Aoki; K. Kato J. Mater. Sci., 16 (1981), pp. 809-812

[2] G. De With; H.J.A. Van Dijk; N. Hattu; K. Prijs J. Mater. Sci., 16 (1981), pp. 1592-1598

[3] R. Halouani; D. Bernache-Assollant; E. Champion; A. Ababou J. Mater. Sci.: Mater. Med., 5 (1994), pp. 563-568

[4] P. Van Landuyt; F. Li; J.P. Keustermans; J.M. Streydio; F. Delannay; E. Munting J. Mater. Sci.: Mater. Med., 6 (1995), pp. 8-13

[5] E.D. Franz Z. Naturforchung, 38b (1983), pp. 1037-1040

[6] G. Montel Physicochimie et cristallographie des apatites d'intérêt biologique, Editions du CNRS, Paris, 1975

[7] G.H. Nancollas Biological Mineralisation and Demineralisation (G.H. Nancollas, ed.), Springer-Verlag, Berlin, 1982

[8] J.C. Elliott Structure and Chemistry of the Apatites and Other Related Calcium Orthophosphates, Elsevier, Amsterdam, 1994

[9] T.S.B. Narasaraju Indian J. Chem., 10 (1972), pp. 308-309

[10] F. Ben Ayed; J. Bouaziz; K. Bouzouita J. Alloys Compd., 322 (2001) no. 1–2, pp. 238-245

[11] K.A. Gross; L.M. Rodríguez-Lorenzo Biomaterials, 25 (2004), pp. 1385-1394

[12] K.A. Gross; K.A. Bhadang Biomaterials, 25 (2004), pp. 1395-1405

[13] R.G. Hill; A. Stamboulis; R.V. Law; A. Clifford; M.R. Towler; C. Crowley J. Non-Cryst. Solids, 336 (2004), pp. 223-229

[14] M.E. Fleet; Y. Pan J. Solid State Chem., 112 (1994), pp. 78-81

[15] B. Badraoui; A. Aissa; A. Bigi; M. Debbabi; M. Gazzano J. Solid State Chem., 179 (2006), pp. 3065-3072

[16] R.Z. LeGeros Calcium Phosphates in Oral Biology and Medicine (H.M. Myers, ed.), Krager, New York, 1991

[17] M. Hidouri; K. Bouzouita; F. Kooli; I. Khattech Mater. Chem. Phys., 80 (2003), pp. 496-505

[18] J.P. Brousse Détermination des propriétés de rupture fragile des matériaux céramiques : Application au cas de l'alumine, Mémoire d'Ingénieur, CNAM, Limoges, France, 1981

[19] A.G. Evans; E.A. Charles J. Am. Ceram. Soc., 59 (1976), pp. 371-372

[20] N. Senamaud; D. Bernache-Assollant; E. Champion; M. Heughebaert; C. Rey Solid State Ionics, 101–103 (1997), pp. 1357-1362

[21] W.D. Kingery; H.K. Bowen; D.R. Uhlmann Introduction to Ceramics, Wiley and Sons, New York, 1976

[22] R.W. Rice Microstructure dependence of mechanical behaviour (R.K. Mac, ed.), Treatise on Materials Science and Technology, Academic Press, New York, 1977

[23] M.A. Lopes; F.J. Monteiro; J.D. Santos Biomaterials, 20 (1999), pp. 2085-2090

[24] R.W. Rice J. Mater. Sci., 31 (1996), pp. 1969-1983

  • Dušan V. Milojkov; Ana S. Radosavljević-Mihajlović; Vojislav Dj. Stanić; Branislav J. Nastasijević; Ksenija Radotić; Ivona Janković-Častvan; Vukosava Živković-Radovanović Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents, Journal of Photochemistry and Photobiology B: Biology, Volume 239 (2023), p. 112649 | DOI:10.1016/j.jphotobiol.2023.112649
  • Jihen Ben Slimen; Mohammed Mehnaoui; Samira Jebahi; Khaled Boughzala; Mustapha Hidouri Thermal and structural properties of sodium, potassium and carbonate doped strontium hydroxyfluorapatite, Journal of the Indian Chemical Society, Volume 99 (2022) no. 6, p. 100475 | DOI:10.1016/j.jics.2022.100475
  • Vuk Uskoković Ion-doped hydroxyapatite: An impasse or the road to follow?, Ceramics International, Volume 46 (2020) no. 8, p. 11443 | DOI:10.1016/j.ceramint.2020.02.001
  • Mustapha Hidouri; Sergey V. Dorozhkin; Nawaf Albeladi Thermal Behavior, Sintering and Mechanical Characterization of Multiple Ion-Substituted Hydroxyapatite Bioceramics, Journal of Inorganic and Organometallic Polymers and Materials, Volume 29 (2019) no. 1, p. 87 | DOI:10.1007/s10904-018-0969-6
  • M.S. Hejazi; M. Ahmadian; M. Meratian; M.H. Fathi Effect of alumina contents on phase stability and mechanical properties of magnesium fluorapatite/alumina composites, Journal of the Mechanical Behavior of Biomedical Materials, Volume 40 (2014), p. 95 | DOI:10.1016/j.jmbbm.2014.08.004
  • Samia Nsar; Amel Hassine; Khaled Bouzouita Sintering and Mechanical Properties of Magnesium and Fluorine Co-Substituted Hydroxyapatites, Journal of Biomaterials and Nanobiotechnology, Volume 04 (2013) no. 01, p. 1 | DOI:10.4236/jbnb.2013.41001
  • Ashutosh Goel; Raghu Raman Rajagopal; José M.F. Ferreira Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses, Acta Biomaterialia, Volume 7 (2011) no. 11, p. 4071 | DOI:10.1016/j.actbio.2011.06.047
  • S. Nasr; K. Bouzouita Sintering Behavior of Magnesium-Substituted Fluorapatite Powders Prepared by Hydrothermal Method, Bioinorganic Chemistry and Applications, Volume 2011 (2011), p. 1 | DOI:10.1155/2011/453759

Cité par 8 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: