Comptes Rendus
Nucleation of crystals from their liquid phase
[Nucléation des cristaux à partir de leur phase liquide]
Comptes Rendus. Physique, Nucleation, Volume 7 (2006) no. 9-10, pp. 988-999.

Un liquide peut être surfondu en-dessous de la température d'équilibre Tm avec sa phase solide ou comprimé au-dessus de la pression d'équilibre Pm correspondante. De nombreux auteurs relient le degré de surfusion (ou de surpression) maximal d'un liquide à une valeur de la tension interfaciale liquide–solide en utilisant la théorie standard de la nucléation. Le but principal de cette revue est d'examiner dans quelle mesure cette relation est justifiée. Nous passons en revue différents arguments généraux et considérons principalement deux exemples : l'hélium liquide qui est pur et simple donc un système modèle, et l'eau qui est un liquide complexe mais omniprésent.

Liquids can be supercooled below their melting temperature Tm or pressurized above their melting pressure Pm. Many authors relate the maximum degree of supercooling—or overpressurization—to a value of the liquid–solid interfacial tension by using the standard theory of nucleation. The main goal of this review is to examine whether this relation is justified or not. We consider general arguments and two main examples: liquid helium which is simple and pure, consequently a model system, and liquid water which is complex but ubiquitous.

Publié le :
DOI : 10.1016/j.crhy.2006.10.024
Mots-clés : Nucleation, Metastability, Crystals, Liquid

Sébastien Balibar 1 ; Frédéric Caupin 1

1 Laboratoire de Physique Statistique de l'Ecole Normale Supérieure associé aux Universités Paris 6 et Paris 7 et au CNRS, 24, rue Lhomond, 75231 Paris cedex 05, France
@article{CRPHYS_2006__7_9-10_988_0,
     author = {S\'ebastien Balibar and Fr\'ed\'eric Caupin},
     title = {Nucleation of crystals from their liquid phase},
     journal = {Comptes Rendus. Physique},
     pages = {988--999},
     publisher = {Elsevier},
     volume = {7},
     number = {9-10},
     year = {2006},
     doi = {10.1016/j.crhy.2006.10.024},
     language = {en},
}
TY  - JOUR
AU  - Sébastien Balibar
AU  - Frédéric Caupin
TI  - Nucleation of crystals from their liquid phase
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 988
EP  - 999
VL  - 7
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.10.024
LA  - en
ID  - CRPHYS_2006__7_9-10_988_0
ER  - 
%0 Journal Article
%A Sébastien Balibar
%A Frédéric Caupin
%T Nucleation of crystals from their liquid phase
%J Comptes Rendus. Physique
%D 2006
%P 988-999
%V 7
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2006.10.024
%G en
%F CRPHYS_2006__7_9-10_988_0
Sébastien Balibar; Frédéric Caupin. Nucleation of crystals from their liquid phase. Comptes Rendus. Physique, Nucleation, Volume 7 (2006) no. 9-10, pp. 988-999. doi : 10.1016/j.crhy.2006.10.024. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.024/

[1] R. Ishiguro; F. Caupin; S. Balibar Europhys. Lett., 75 (2006), p. 91

[2] B.M. Cwilong Proc. Roy. Soc. A, 190 (1947), p. 137

[3] E.M. Fournier d'Albe Quart. J. R. Meteorolog. Soc., 75 (1949), p. 323

[4] P. Taborek Phys. Rev. B, 32 (1985), p. 5902

[5] H.J. Maris, C. R. Physique, this issue, | DOI

[6] L. Landau, I.M. Lifshitz, Statistical Mechanics, p. 533 (Chapter 162)

[7] D.T. Wu; L. Granasy; F. Spaepen MRS Bulletin ( December 2004 ), p. 945

[8] F. Caupin, E. Herbert, C. R. Physique, this issue, | DOI

[9] D. Oxtoby J. Phys.: Condens. Matter, 4 (1992), p. 7627

[10] D. Turnbull; J.C. Fisher J. Chem. Phys., 17 (1948), p. 71

[11] P. Kabath; P. Stökel; A. Lindinger; H. Baumgärtel J. Molecular Liquids, 125 (2006), p. 204

[12] H.J. Maris; G. Seidel; T.E. Huber J. Low Temp. Phys., 51 (1983), p. 471

[13] G. Seidel; H.J. Maris; F.I.B. Williams; J.G. Cardon Phys. Rev. Lett., 56 (1986), p. 2380

[14] I.M. Lifshitz; Yu. Kagan Sov. Phys. JETP, 62 (1972), p. 385

[15] H. Kramers Physica (Utrecht), 7 (1940), p. 284

[16] H. Grabert; P. Olshowski; U. Weiss Phys. Rev. B, 36 (1987), p. 1931

[17] E. Varoquaux, this issue

[18] K.F. Kelton; G.W. Lee; A.K. Gangopadhyay; R.W. Hyers; T.J. Rathz; J.R. Rogers; M.B. Robinson; D.S. Robinson Phys. Rev. Lett., 90 (2003), p. 195504

[19] F. Caupin; S. Balibar Phys. Rev. B, 64 (2001) (064507)

[20] S. Balibar J. Low Temp. Phys., 129 (2002), p. 363

[21] R.J. Speedy J. Phys. Chem., 86 (1982), p. 982

[22] L. Bosio; C.G. Windsor Phys. Rev. Lett., 35 (1975), p. 1652

[23] T.V. Ramakrishnan; M. Yussouff Phys. Rev. B, 19 (1979), p. 2775

[24] P. Harrowell; D.W. Oxtoby J. Chem. Phys., 80 (1984), p. 1639

[25] D.W. Oxtoby Session LI, 1989, Elsevier Science Publishers BV, Amsterdam (1991), p. 147

[26] W.H. Shih; Z.Q. Wang; X.C. Zeng; D. Stroud Phys. Rev. A, 35 (1987), p. 2611

[27] L. Granasy; T. Pusztai; P.F. James J. Chem. Phys., 117 (2002), p. 6157

[28] P.R. Harrowell; D.W. Oxtoby J. Chem. Phys., 86 (1987), p. 2932

[29] J.F. Lutsko Phys. Rev. E, 74 (2006) (021603)

[30] S. Balibar; H. Alles; A.Ya. Parshin Rev. Mod. Phys., 77 (2005), p. 317

[31] P.G. Debenedetti J. Phys.: Condens. Matter, 15 (2003), p. R1669-R1726

[32] S.C. Mossop Proc. Phys. Cos., 68 (1955), p. 193

[33] S.C. Hardy Phil. Mag., 35 (1977), p. 471

[34] A. Skapski; R. Billups; J. Rooney J. Chem. Phys., 26 (1957)

[35] W.B. Hillig J. Cryst. Growth, 183 (1998), p. 463

[36] A.W. Rempel; J.S. Wettlaufer Rev. Mod. Phys., 78 (2006), p. 695

[37] P.H. Polle; F. Sciortino; U. Essmann; H.E. Stanley Nature (London), 360 (1992), p. 324

[38] E. Herbert; S. Balibar; F. Caupin Phys. Rev. E, 74 (2006), p. 041603

[39] H.J. Maris J. Low Temp. Phys., 94 (1994), p. 125

[40] H.J. Maris J. Low Temp. Phys., 98 (1995), p. 403

[41] M. Guilleumas; M. Pi; M. Barranco; J. Navarro; M.A. Solis Phys. Rev. B, 47 (1993), p. 9116

[42] J. Boronat; J. Casulleras; J. Navarro Phys. Rev. B, 50 (1994), p. 3427

[43] F. Werner; G. Beaume; A. Hobeika; S. Nascimbene; C. Herrmann; F. Caupin; S. Balibar J. Low Temp. Phys., 136 (2004), p. 93

[44] J.A. Nissen; E. Bodegom; L.C. Brodie; J.S. Semura Phys. Rev. B, 40 (1989), p. 6617

[45] S.C. Hall; J. Classen; C.K. Su; H.J. Maris J. Low Temp. Phys., 101 (1995), p. 793

[46] M.S. Pettersen; S. Balibar; H.J. Maris Phys. Rev. B, 49 (1994), p. 12062

[47] S. Balibar; B. Castaing; C. Laroche J. Physique Lettres (Paris), 41 (1980), p. 283

[48] Y. Sasaki; T. Mizusaki J. Low Temp. Phys., 110 (1998), p. 491

[49] J.P. Ruutu; P.J. Hakonen; J.S. Penttila; A.V. Babkin; J.P. Saramaki; E.B. Sonin Phys. Rev. Lett., 77 (1994), p. 2514

[50] S. Balibar; Y. Sasaki; T. Mizusaki J. Low Temp. Phys., 120 (2000), p. 293

[51] X. Chavanne; S. Balibar; F. Caupin; X. Chavanne; S. Balibar; F. Caupin J. Low Temp. Phys., 86 (2001), p. 5506

[52] M. Guilleumas; M. Barranco; D.M. Jezek; R.J. Lombard; M. Pi Phys. Rev. B, 54 (1996), p. 16135

[53] H.J. Maris; F. Caupin J. Low Temp. Phys., 131 (2003), p. 145

[54] R.P. Feynman (C.G. Gorter, ed.), Prog. Low Temp. Phys., vol. 1, North-Holland, Amsterdam, 1955

[55] F. Dalfovo; A. Lastri; L. Pricaupenko; S. Stringari; J. Treiner Phys. Rev. B, 52 (1995), p. 1193

[56] F. Caupin; D.O. Edwards; H.J. Maris Physica B, 329–333 (2003), p. 185

[57] T. Schneider; C.P. Enz Phys. Rev. Lett., 27 (1971), p. 1186

[58] L. Vranjes; J. Boronat; J. Casulleras; C. Cazorla Phys. Rev. Lett., 95 (2005) (145302)

[59] B. Vinet; L. Magnusson; H. Frederiksson; P.J. Desré J. Colloid Interface Sci., 255 (2002), p. 363

[60] D. Turnbull; R.E. Cech J. Appl. Phys., 21 (1950), p. 804

[61] V.M. Fokin; E.D. Zanotto; N.S. Yuritsyn; J.W.P. Schmelzer J. Non-Cryst. Solids, 352 (2006), p. 2681

  • Yuriy A. Abramov; Peiyu Zhang; Qiao Zeng; Mingjun Yang; Yang Liu; Sivakumar Sekharan Computational Insights into Kinetic Hindrance Affecting Crystallization of Stable Forms of Active Pharmaceutical Ingredients, Crystal Growth Design, Volume 20 (2020) no. 3, p. 1512 | DOI:10.1021/acs.cgd.9b01153
  • Yasuhiko Shimotsuma; Kotaro Tomura; Tatsuya Okuno; Masahiro Shimizu; Kiyotaka Miura Femtosecond Laser-Induced Self-Assembly of Ce3+-Doped YAG Nanocrystals, Crystals, Volume 10 (2020) no. 12, p. 1142 | DOI:10.3390/cryst10121142
  • Y. Yang; S. Sirisky; W. Wei; G. M. Seidel; H. J. Maris Nucleation of Bubbles by Electrons in Liquid Helium-4, Journal of Low Temperature Physics, Volume 192 (2018) no. 1-2, p. 48 | DOI:10.1007/s10909-018-1879-2
  • Frédéric Caupin Escaping the no man's land: Recent experiments on metastable liquid water, Journal of Non-Crystalline Solids, Volume 407 (2015), p. 441 | DOI:10.1016/j.jnoncrysol.2014.09.037
  • Antonia Statt; Peter Virnau; Kurt Binder Crystal nuclei in melts: a Monte Carlo simulation of a model for attractive colloids, Molecular Physics, Volume 113 (2015) no. 17-18, p. 2556 | DOI:10.1080/00268976.2015.1042937
  • Luisa Ickes; André Welti; Corinna Hoose; Ulrike Lohmann Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters, Physical Chemistry Chemical Physics, Volume 17 (2015) no. 8, p. 5514 | DOI:10.1039/c4cp04184d
  • An Qu; A. Trimeche; J. Dupont-Roc; J. Grucker; Ph. Jacquier Cavitation density of superfluid helium-4 around 1 K, Physical Review B, Volume 91 (2015) no. 21 | DOI:10.1103/physrevb.91.214115
  • D. Clausse; E.Y. Wardhono; J.-L. Lanoiselle Formation and determination of the amount of ice formed in water dispersed in various materials, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 460 (2014), p. 519 | DOI:10.1016/j.colsurfa.2014.06.032
  • David Julian McClements Crystals and crystallization in oil-in-water emulsions: Implications for emulsion-based delivery systems, Advances in Colloid and Interface Science, Volume 174 (2012), p. 1 | DOI:10.1016/j.cis.2012.03.002
  • Elio Moy; Robert David; A Neumann Theoretical Approaches for Estimating Solid–Liquid Interfacial Tensions, Applied Surface Thermodynamics, Second Edition, Volume 20101338 (2010), p. 555 | DOI:10.1201/ebk0849396878-11
  • M W Ray; R B Hallock Growth of solid hcp4He from the superfluid, Journal of Physics: Conference Series, Volume 150 (2009) no. 3, p. 032088 | DOI:10.1088/1742-6596/150/3/032088
  • Frédéric Caupin Melting and freezing of embedded nanoclusters, Physical Review B, Volume 77 (2008) no. 18 | DOI:10.1103/physrevb.77.184108
  • B. Lindinger; R. Mettin; R. Chow; W. Lauterborn Ice Crystallization Induced by Optical Breakdown, Physical Review Letters, Volume 99 (2007) no. 4 | DOI:10.1103/physrevlett.99.045701

Cité par 13 documents. Sources : Crossref

Commentaires - Politique