Comptes Rendus
Fluid inclusions in minerals: from geosciences to the physics of water and back
[Inclusions fluides dans les minéraux  : un aller-retour entre géosciences et physique de l’eau]
Comptes Rendus. Physique, Volume 23 (2022) no. S2, pp. 71-87.

Les échantillons de minéraux naturels contiennent souvent de petits volumes de matière fluide piégée. Ils transmettent des informations sur l’histoire du minéral hôte et de son environnement, ce qui leur vaut d’être utilisés par les géologues. Les physiciens et physico-chimistes ont réussi à exploiter les inclusions d’eau dans le quartz pour porter l’eau liquide dans un état métastable, à une pression bien inférieure à sa pression d’équilibre avec la vapeur. La pression peut atteindre des valeurs négatives aussi élevées que -140 MPa, ce qui dépasse de loin les limites des autres techniques et s’approche du seuil théorique de nucléation spontanée d’une bulle de vapeur. Cela a permis de mieux comprendre la nucléation et les anomalies de l’eau. À leur tour, les techniques optiques développées pour étudier les propriétés de l’eau ont récemment trouvé une nouvelle application dans la reconstruction des paléotempératures des processus de surface. Je passe ici en revue quelques aspects des inclusions fluides, objets fascinants au carrefour des disciplines.

Natural mineral samples often contain small volumes of trapped fluid material. They carry information about the history of the host mineral and its environment, and for this reason are used by geoscientists. Physicists and physico-chemists have successfully harnessed water inclusions in quartz to bring liquid water to a metastable state, at a pressure well below its equilibrium pressure with vapor. The pressure can reach negative values as large as -140 MPa, which exceeds by far the limits of other techniques, and approaches the theoretical threshold for spontaneous nucleation of a vapor bubble. This has enabled a deeper understanding of nucleation and of the anomalies of water. In turn, the optical techniques developed to study water’s properties have recently found a new application in the reconstruction of palaeotemperatures in surface processes. I review here some aspects of fluid inclusions, these fascinating objects at the crossroads between disciplines.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.127
Keywords: Water, Metastability, Nucleation, Thermodynamic anomalies, Palaeotemperatures, Interdisciplinarity
Mot clés : Eau, Métastabilité, Nucléation, Anomalies thermodynamiques, Paléotempératures, Interdisciplinarité
Frédéric Caupin 1

1 Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut universitaire de France, F-69622, Villeurbanne, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2022__23_S2_71_0,
     author = {Fr\'ed\'eric Caupin},
     title = {Fluid inclusions in minerals: from geosciences to the physics of water and back},
     journal = {Comptes Rendus. Physique},
     pages = {71--87},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {23},
     number = {S2},
     year = {2022},
     doi = {10.5802/crphys.127},
     language = {en},
}
TY  - JOUR
AU  - Frédéric Caupin
TI  - Fluid inclusions in minerals: from geosciences to the physics of water and back
JO  - Comptes Rendus. Physique
PY  - 2022
SP  - 71
EP  - 87
VL  - 23
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.127
LA  - en
ID  - CRPHYS_2022__23_S2_71_0
ER  - 
%0 Journal Article
%A Frédéric Caupin
%T Fluid inclusions in minerals: from geosciences to the physics of water and back
%J Comptes Rendus. Physique
%D 2022
%P 71-87
%V 23
%N S2
%I Académie des sciences, Paris
%R 10.5802/crphys.127
%G en
%F CRPHYS_2022__23_S2_71_0
Frédéric Caupin. Fluid inclusions in minerals: from geosciences to the physics of water and back. Comptes Rendus. Physique, Volume 23 (2022) no. S2, pp. 71-87. doi : 10.5802/crphys.127. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.127/

[1] Melvin T. Tyree; Martin H. Zimmermann Xylem Structure and the Ascent of Sap, Springer Series in Wood Science, Springer, 2002 | DOI

[2] Hervé Cochard Cavitation in Trees, Comptes Rendus Phys., Volume 7 (2006) no. 9-10, pp. 1018-1026 | DOI

[3] Eric Herbert; Sébastien Balibar; Frédéric Caupin Cavitation Pressure in Water, Phys. Rev. E, Volume 74 (2006) no. 4, 041603 | DOI

[4] Q. Zheng; D. J. Durben; G. H. Wolf; C. A. Angell Liquids at Large Negative Pressures: Water at the Homogeneous Nucleation Limit, Science, Volume 254 (1991) no. 5033, pp. 829-832 | DOI

[5] Frédéric Caupin; Eric Herbert Cavitation in Water: A Review, Comptes Rendus Physique, Volume 7 (2006) no. 9-10, pp. 1000-1017 | DOI

[6] John C. Fisher The Fracture of Liquids, J. Appl. Phys., Volume 19 (1948) no. 11, pp. 1062-1067 | DOI

[7] Pablo G. Debenedetti Metastable Liquids: Concepts and Principles, Princeton University Press, 1996

[8] David W. Oxtoby Nucleation of First-Order Phase Transitions, Acc. Chem. Res., Volume 31 (1998) no. 2, pp. 91-97 | DOI

[9] Christiaan Huygens Extrait d’une Lettre de M. Hugens de l’Académie Royale Des Sciences à l’auteur de Ce Journal, Touchant Les Phénomènes de l’eau Purgée d’air, J. Sçavans (1672)

[10] Christiaan Huygens An Extract of a Letter of M. Hugens to the Author of the Journal Des Scavans of July 25. 1672. Attempting to Render the Cause of That Odd Phaenomenon of the QuickSilvers Remaining Suspended Far above the Usual Height in the Torricellian Experiments, Philos. Trans. 1665-1678, Volume 7 (1672), pp. 5027-5030

[11] George S. Kell Early Observations of Negative Pressures in Liquids, Am. J. Phys., Volume 51 (1983) no. 11, pp. 1038-1041 | DOI

[12] Frédéric Caupin; Abraham D. Stroock The Stability Limit and Other Open Questions on Water at Negative Pressure, Liquid Polymorphism: Advances in Chemical Physics (Harry Eugene Stanley; Stuart Rice, eds.), John Wiley Sons, 2013 no. 152, pp. 51-80 | DOI

[13] Kristina Davitt; Arnaud Arvengas; Frédéric Caupin Water at the Cavitation Limit: Density of the Metastable Liquid and Size of the Critical Bubble, Eur. Phys. Lett., Volume 90 (2010) no. 1, 16002 | DOI

[14] Arnaud Arvengas; Kristina Davitt; Frédéric Caupin Fiber Optic Probe Hydrophone for the Study of Acoustic Cavitation in Water, Rev. Sci. Instrum., Volume 82 (2011) no. 3, 034904 | DOI

[15] Vratislav Hurai; Monika Huraiová; Marek Slobodník; Rainer Thomas Geofluids: Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes, Elsevier, 2015 | DOI

[16] John K. Warren Evaporites – a Geological Compendium, Springer, 2016 | DOI

[17] Edwin Roedder Fluid Inclusions, Reviews in Mineralogy Geochemistry, 12, Walter de Gruyter, 2018 (Ebook version of the 1984 edition) | DOI

[18] Edwin Roedder; Allen V. Heyl; John P. Creel Environment of Ore Deposition at the Mex-Tex Deposits, Hansonburg District, New Mexico, from Studies of Fluid Inclusions, Econ. Geol., Volume 63 (1968) no. 4, pp. 336-348 | DOI

[19] Tim K. Lowenstein; Brian A. Schubert; Michael N. Timofeeff Microbial Communities in Fluid Inclusions and Long-Term Survival in Halite, GSA Today, Volume 21 (2011) no. 1, pp. 4-9 | DOI

[20] Michel Dubois Les Grandes Étapes Du Développement de l’étude Des Inclusions Fluides, Trav. Com. Fr. Hist. Geol., Volume 17 (2003), pp. 1-22

[21] S. E. Kesler; R. J. Bodnar; T. P. Mernagh Role of Fluid and Melt Inclusion Studies in Geologic Research, Geofluids, Volume 13 (2013) no. 4, pp. 398-404 | DOI

[22] Déodat de Dolomieu Sur de l’huile de Pétrole Dans Le Cristal de Roche et Les Fluides Élastiques Tirés Du Quartz, J. Phys. Chim. Hist. Nat. Arts, Volume 40 (1792)

[23] Edwin Roedder Ancient Fluids in Crystals, Sci. Am., Volume 207 (1962) no. 4, pp. 38-47 | DOI

[24] H. C. Sorby On the Microscopical, Structure of Crystals, Indicating the Origin of Minerals and Rocks, Q. J. Geol. Soc., Volume 14 (1858) no. 1-2, pp. 453-500 | DOI

[25] Jacques L. R. Touret Les inclusions fluides : histoire d’un paradoxe, Bull. Minéralogie, Volume 107 (1984) no. 2, pp. 125-137 | DOI

[26] Jacques L. R. Touret Fluids in Metamorphic Rocks, Lithos, Volume 55 (2001) no. 1-4, pp. 1-25 | DOI

[27] Gaston Giuliani; Jean Dubessy; Daniel Ohnenstetter; David Banks; Yannick Branquet; Julien Feneyrol; Anthony E. Fallick; Jean-Emmanuel Martelat The Role of Evaporites in the Formation of Gems during Metamorphism of Carbonate Platforms: A Review, Miner. Depos., Volume 53 (2018) no. 1, pp. 1-20 | DOI

[28] P. Voudouris; C. Mavrogonatos; P. G. Spry; T. Baker; V. Melfos; R. Klemd; K. Haase; A. Repstock; A. Djiba; U. Bismayer; A. Tarantola; C. Scheffer; R. Moritz; K. Kouzmanov; D. Alfieris; K. Papavassiliou; A. Schaarschmidt; E. Galanopoulos; E. Galanos; J. Kołodziejczyk; C. Stergiou; M. Melfou Porphyry and Epithermal Deposits in Greece: An Overview, New Discoveries, and Mineralogical Constraints on Their Genesis, Ore Geology Reviews, Volume 107 (2019), pp. 654-691 | DOI

[29] J. R. Petit; J. Jouzel; D. Raynaud; N. I. Barkov; J.-M. Barnola; I. Basile; M. Bender; J. Chappellaz; M. Davis; G. Delaygue; M. Delmotte; V. M. Kotlyakov; M. Legrand; V. Y. Lipenkov; C. Lorius; L. Pépin; C. Ritz; E. Saltzman; M. Stievenard Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica, Nature, Volume 399 (1999) no. 6735, pp. 429-436 | DOI

[30] P. Kindler; M. Guillevic; M. Baumgartner; J. Schwander; A. Landais; Martin Leuenberger Temperature Reconstruction from 10 to 120 kyr b2k from the NGRIP Ice Core, Clim. Past, Volume 10 (2014) no. 2, pp. 887-902 | DOI

[31] Richard B. Alley Ice-Core Evidence of Abrupt Climate Changes, Proc. Natl. Acad. Sci. USA, Volume 97 (2000) no. 4, pp. 1331-1334 | DOI

[32] Stéphane Affolter; Anamaria Häuselmann; Dominik Fleitmann; R. Lawrence Edwards; Hai Cheng; Markus Leuenberger Central Europe Temperature Constrained by Speleothem Fluid Inclusion Water Isotopes over the Past 14,000 Years, Sci. adv., Volume 5 (2019) no. 6, eaav3809 | DOI

[33] Tim K. Lowenstein; Michael N. Timofeeff; Sean T. Brennan; Lawrence A. Hardie; Robert V. Demicco Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions, Science, Volume 294 (2001) no. 5544, pp. 1086-1088 | DOI

[34] Sean T. Brennan; Tim K. Lowenstein; Juske Horita Seawater Chemistry and the Advent of Biocalcification, Geology, Volume 32 (2004) no. 6, pp. 473-476 | DOI

[35] Sara I. Schreder-Gomes; Kathleen C. Benison; Jeremiah A. Bernau 830-Million-Year-Old Microorganisms in Primary Fluid Inclusions in Halite, Geology, Volume 50 (2022) no. 8, pp. 918-922 | DOI

[36] Russell H. Vreeland; William D. Rosenzweig; Dennis W. Powers Isolation of a 250 Million-Year-Old Halotolerant Bacterium from a Primary Salt Crystal, Nature, Volume 407 (2000) no. 6806, pp. 897-900 | DOI

[37] Salla T. Jaakkola; Friedhelm Pfeiffer; Janne J. Ravantti; Qinggong Guo; Ying Liu; Xiangdong Chen; Hongling Ma; Chunhe Yang; Hanna M. Oksanen; Dennis H. Bamford The Complete Genome of a Viable Archaeum Isolated from 123-Million-Year-Old Rock Salt, Environ. Microbiol., Volume 18 (2016) no. 2, pp. 565-579 | DOI

[38] Krithivasan Sankaranarayanan; Michael N. Timofeeff; Rita Spathis; Tim K. Lowenstein; J. Koji Lum Ancient Microbes from Halite Fluid Inclusions: Optimized Surface Sterilization and DNA Extraction, PLOS ONE, Volume 6 (2011) no. 6, e20683 | DOI

[39] Sarah Stewart Johnson; Martin B. Hebsgaard; Torben R. Christensen; Mikhail Mastepanov; Rasmus Nielsen; Kasper Munch; Tina Brand; M. Thomas P. Gilbert; Maria T. Zuber; Michael Bunce; Regin Rønn; David Gilichinsky; Duane Froese; Eske Willerslev Ancient Bacteria Show Evidence of DNA Repair, Proc. Natl. Acad. Sci., Volume 104 (2007) no. 36, pp. 14401-14405 | DOI

[40] Helge Mißbach; Jan-Peter Duda; Alfons M. van den Kerkhof; Volker Lüders; Andreas Pack; Joachim Reitner; Volker Thiel Ingredients for Microbial Life Preserved in 3.5 Billion-Year-Old Fluid Inclusions, Nat. Commun., Volume 12 (2021) no. 1, p. 1101 | DOI

[41] Kathleen C. Benison How to Search for Life in Martian Chemical Sediments and Their Fluid and Solid Inclusions Using Petrographic and Spectroscopic Methods, Front. Environ. Sci., Volume 7 (2019), 108 | DOI

[42] Thomas Loerting; Violeta Fuentes-Landete; Christina M. Tonauer; Tobias M. Gasser Open Questions on the Structures of Crystalline Water Ices, Commun. Chem., Volume 3 (2020) no. 1, p. 109 | DOI

[43] H. Kagi; R. Lu; P. Davidson; A. F. Goncharov; H. K. Mao; R. J. Hemley Evidence for Ice VI as an Inclusion in Cuboid Diamonds from High P-T near Infrared Spectroscopy, Mineral. Mag., Volume 64 (2000) no. 6, pp. 1089-1097 | DOI

[44] O. Tschauner; S. Huang; E. Greenberg; V. B. Prakapenka; C. Ma; G. R. Rossman; A. H. Shen; D. Zhang; M. Newville; A. Lanzirotti; K. Tait Ice-VII Inclusions in Diamonds: Evidence for Aqueous Fluid in Earth’s Deep Mantle, Science, Volume 359 (2018) no. 6380, pp. 1136-1139 | DOI

[45] Marcelin Berthelot Sur Quelques Phénomènes de Dilatation Forcée Des Liquides, Ann. Chim. Phys., Volume 30 (1850), pp. 232-237

[46] Stephen J. Henderson; Robin J. Speedy Temperature of Maximum Density in Water at Negative Pressure, J. Phys. Chem., Volume 91 (1987) no. 11, pp. 3062-3068 | DOI

[47] Julius Meyer Zur Kenntnis Des Negativen Druckes in Flüssigkeiten, Abh. Dtsch. Bunsen–Gessellschaft, Volume 6 (1911), pp. 1-53

[48] Edwin Roedder Studies of Fluid Inclusions; Part 1, Low Temperature Application of a Dual-Purpose Freezing and Heating Stage, Econ. Geol., Volume 57 (1962) no. 7, pp. 1045-1061 | DOI

[49] Edwin Roedder Metastable Superheated Ice in Liquid-Water Inclusions under High Negative Pressure, Science, Volume 155 (1967) no. 3768, pp. 1413-1417 | DOI

[50] C. Qiu; Yves Krüger; Max Wilke; Dominik Marti; Jaroslav Rička; Martin Frenz Exploration of the Phase Diagram of Liquid Water in the Low-Temperature Metastable Region Using Synthetic Fluid Inclusions, Phys. Chem. Chem. Phys., Volume 18 (2016) no. 40, pp. 28227-28241 | DOI

[51] J. L. Green; D. J. Durben; G. H. Wolf; C. A. Angell Water and Solutions at Negative Pressure: Raman Spectroscopic Study to -80 Megapascals, Science, Volume 249 (1990) no. 4969, pp. 649-652 | DOI

[52] Kirill I. Shmulovich; Lionel Mercury; Régis Thiéry; Claire Ramboz; Mouna El Mekki Experimental Superheating of Water and Aqueous Solutions, Geochim. Cosmochim. Acta, Volume 73 (2009) no. 9, pp. 2457-2470 | DOI

[53] Mouna El Mekki Azouzi; Claire Ramboz; Jean-François Lenain; Frédéric Caupin A Coherent Picture of Water at Extreme Negative Pressure, Nat. Phys., Volume 9 (2012) no. 1, pp. 38-41 | DOI

[54] David W. Oxtoby; Dimo Kashchiev A General Relation between the Nucleation Work and the Size of the Nucleus in Multicomponent Nucleation, J. Chem. Phys., Volume 100 (1994) no. 10, pp. 7665-7671 | DOI

[55] A. Polian; M. Grimsditch Brillouin Scattering from H 2 O: Liquid, Ice VI, and Ice VII, Phys. Rev. B, Volume 27 (1983) no. 10, pp. 6409-6412 | DOI

[56] Davide Mantegazzi; Carmen Sanchez-Valle; Thomas Driesner Thermodynamic Properties of Aqueous NaCl Solutions to 1073 K and 4.5 GPa, and Implications for Dehydration Reactions in Subducting Slabs, Geochim. Cosmochim. Acta, Volume 121 (2013), pp. 263-290 | DOI

[57] Vincent Holten; Chen Qiu; Emmanuel Guillerm; Max Wilke; Jaroslav Rička; Martin Frenz; Frédéric Caupin Compressibility Anomalies in Stretched Water and Their Interplay with Density Anomalies, J. Phys. Chem. Lett., Volume 8 (2017) no. 22, pp. 5519-5522 | DOI

[58] Frédéric Caupin; Mikhail A. Anisimov Thermodynamics of Supercooled and Stretched Water: Unifying Two-Structure Description and Liquid-Vapor Spinodal, J. Chem. Phys., Volume 151 (2019) no. 3, 034503 | DOI

[59] Hitoshi Kanno; Robin J. Speedy; C. A. Angell Supercooling of Water to -92 C under Pressure, Science, Volume 189 (1975) no. 4206, pp. 880-881 | DOI

[60] Hitoshi Kanno; Kuniharu Miyata The Location of the Second Critical Point of Water, Chem. Phys. Lett., Volume 422 (2006) no. 4-6, pp. 507-512 | DOI

[61] Vincent Holten; Jan V. Sengers; Mikhail A. Anisimov Equation of State for Supercooled Water at Pressures up to 400 MPa, J. Phys. Chem. Ref. Data, Volume 43 (2014) no. 4, 043101 | DOI

[62] A. D. Alvarenga; M. Grimsditch; R. J. Bodnar Elastic Properties of Water under Negative Pressures, J. Chem. Phys., Volume 98 (1993) no. 11, pp. 8392-8396 | DOI

[63] Gaël Pallares; Mouna El Mekki Azouzi; Miguel A. González; Juan L. Aragones; José Luis F. Abascal; Chantal Valeriani; Frédéric Caupin Anomalies in Bulk Supercooled Water at Negative Pressure, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 22, pp. 7936-7941 | DOI

[64] Gaël Pallares; Miguel A. Gonzalez; José Luis F. Abascal; Chantal Valeriani; Frédéric Caupin Equation of State for Water and Its Line of Density Maxima down to -120 MPa, Phys. Chem. Chem. Phys., Volume 18 (2016) no. 8, pp. 5896-5900 | DOI

[65] The International Association for the Properties of Water and Steam Revised release on the IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use (2018) no. IAPWS R6-95(2018) (http://www.iapws.org/relguide/IAPWS95-2018.pdf) (Technical report)

[66] Peter H. Poole; Francesco Sciortino; Ulrich Essmann; H. Eugene Stanley Phase Behaviour of Metastable Water, Nature, Volume 360 (1992) no. 6402, pp. 324-328 | DOI

[67] Paola Gallo; Katrin Amann-Winkel; Charles Austen Angell; Mikhail A. Anisimov; Frédéric Caupin; Charusita Chakravarty; Erik Lascaris; Thomas Loerting; Athanassios Zois Panagiotopoulos; John Russo; Jonas Alexander Sellberg; Harry Eugene Stanley; Hajime Tanaka; Carlos Vega; Limei Xu; Lars Gunnar Moody Pettersson Water: A Tale of Two Liquids, Chem. Rev., Volume 116 (2016) no. 13, pp. 7463-7500 | DOI

[68] Kyung Hwan Kim; Katrin Amann-Winkel; Nicolas Giovambattista; Alexander Späh; Fivos Perakis; Harshad Pathak; Marjorie Ladd Parada; Cheolhee Yang; Daniel Mariedahl; Tobias Eklund; Thomas. J. Lane; Seonju You; Sangmin Jeong; Matthew Weston; Jae Hyuk Lee; Intae Eom; Minseok Kim; Jaeku Park; Sae Hwan Chun; Peter H. Poole; Anders Nilsson Experimental Observation of the Liquid-Liquid Transition in Bulk Supercooled Water under Pressure, Science, Volume 370 (2020) no. 6519, pp. 978-982 | DOI

[69] Mikhail A. Anisimov; Michal Duška; Frédéric Caupin; Lauren E. Amrhein; Amanda Rosenbaum; Richard J. Sadus Thermodynamics of Fluid Polyamorphism, Phys. Rev. X, Volume 8 (2018) no. 1, 011004 | DOI

[70] Frédéric Caupin; Mikhail A. Anisimov Minimal Microscopic Model for Liquid Polyamorphism and Waterlike Anomalies, Phys. Rev. Lett., Volume 127 (2021) no. 18, 185701 | DOI

[71] Alberto Zaragoza; Chandra Shekhar Pati Tripathi; Miguel A. Gonzalez; José Luis F. Abascal; Frédéric Caupin; Chantal Valeriani Effect of Dissolved Salt on the Anomalies of Water at Negative Pressure, J. Chem. Phys., Volume 152 (2020) no. 19, 194501 | DOI

[72] Linda C. Kah; Timothy W. Lyons; John T. Chesley Geochemistry of a 1.2 Ga Carbonate-Evaporite Succession, Northern Baffin and Bylot Islands: Implications for Mesoproterozoic Marine Evolution, Precambrian Research, Volume 111 (2001) no. 1-4, pp. 203-234 | DOI

[73] Sheila M. Roberts; Ronald J. Spencer Paleotemperatures Preserved in Fluid Inclusions in Halite, Geochim. Cosmochim. Acta, Volume 59 (1995) no. 19, pp. 3929-3942 | DOI

[74] Tim K. Lowenstein; Jianren Li; Christopher B. Brown Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA, Chem. Geol., Volume 150 (1998) no. 3–4, pp. 223-245 | DOI

[75] Emmanuel Guillerm; Véronique Gardien; Daniel Ariztegui; Frédéric Caupin Restoring Halite Fluid Inclusions as an Accurate Palaeothermometer: Brillouin Thermometry versus Microthermometry, Geostand. Geoanal. Res., Volume 44 (2020) no. 2, pp. 243-264 | DOI

[76] András Fall; J. Donald Rimstidt; Robert J. Bodnar The Effect of Fluid Inclusion Size on Determination of Homogenization Temperature and Density of Liquid-Rich Aqueous Inclusions, American Mineralogist, Volume 94 (2009) no. 11-12, pp. 1569-1579 | DOI

[77] Dominik Marti; Yves Krüger; Dominik Fleitmann; Martin Frenz; Jaro Rička The Effect of Surface Tension on Liquid–Gas Equilibria in Isochoric Systems and Its Application to Fluid Inclusions, Fluid Phase Equilib., Volume 314 (2012), pp. 13-21 | DOI

[78] Yves Krüger; Dominik Marti; Rita Hidalgo Staub; Dominik Fleitmann; Martin Frenz Liquid–Vapour Homogenisation of Fluid Inclusions in Stalagmites: Evaluation of a New Thermometer for Palaeoclimate Research, Chem. Geol., Volume 289 (2011) no. 1-2, pp. 39-47 | DOI

[79] Frédéric Caupin Effects of Compressibility and Wetting on the Liquid-Vapor Transition in a Confined Fluid, J. Chem. Phys., Volume 157 (2022) no. 5, 054506 | DOI

[80] Yves Krüger; Patrick Stoller; Jaroslav Rička; Martin Frenz Femtosecond Lasers in Fluid-Inclusion Analysis: Overcoming Metastable Phase States, Eur. J. Mineral., Volume 19 (2007) no. 5, pp. 693-706 | DOI

[81] Yves Krüger; Juan Manuel García-Ruiz; Àngels Canals; Dominik Marti; Martin Frenz; Alexander E. S. Van Driessche Determining Gypsum Growth Temperatures Using Monophase Fluid Inclusions–Application to the Giant Gypsum Crystals of Naica, Mexico, Geology, Volume 41 (2013) no. 2, pp. 119-122 | DOI

[82] Mouna El Mekki-Azouzi; Chandra Shekhar Pati Tripathi; Gaël Pallares; Véronique Gardien; Frédéric Caupin Brillouin Spectroscopy of Fluid Inclusions Proposed as a Paleothermometer for Subsurface Rocks, Sci. Rep., Volume 5 (2015) no. 1, 13168 | DOI

[83] Emmanuel Guillerm; Véronique Gardien; Niels S. Brall; Daniel Ariztegui; Markus J. Schwab; Ina Neugebauer; Nicolas D. Waldmann; Adeline Lach; Frédéric Caupin (in preparation)

[84] Ido Sirota; Yehouda Enzel; Nadav G. Lensky Temperature Seasonality Control on Modern Halite Layers in the Dead Sea: In Situ Observations, GSA Bulletin, Volume 129 (2017) no. 9-10, pp. 1181-1194 | DOI

[85] Niels S. Brall; Véronique Gardien; Daniel Ariztegui; Philippe Sorrel; Emmanuel Guillerm; Frédéric Caupin Reconstructing Lake Bottom Water Temperatures and Their Seasonal Variability in the Dead Sea Basin during MIS5e, Depositional Rec., Volume 8 (2022) no. 2, pp. 616-627 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Fluid inclusions and U/Pb dating of the El Pilote Fluorite skarn occurrence: Metallogenic implications

Gilles Levresse; Jordi Tritlla; Jose Gregorio Solorio-Munguía; ...

C. R. Géos (2011)


Cavitation in water: a review

Frédéric Caupin; Eric Herbert

C. R. Phys (2006)


The Bjerknes instability during crystal nucleation by acoustic waves

Martine Ben Amar

C. R. Méca (2004)