Comptes Rendus
Network and thermodynamic conditions for a single macroscopic current fluctuation theorem
[Conditions thermodynamique et de réseau du théorème de fluctuations pour un seul courant macroscopique]
Comptes Rendus. Physique, Volume 8 (2007) no. 5-6, pp. 579-590.

Nous analysons les différentes situations où un théorème de fluctuations peut être démontré pour un seul courant macroscopique d'un système dans un état stationnaire de non-équilibre soutenant plusieurs processus de transport. Nous exprimons les conditions sous lesquelles un tel théorème de fluctuations tiendra en termes des cycles et des processus de transport sur le réseau. Dans ce cas, un courant macroscopique donné obéit à un théorème de fluctuations sans implication des autres processus de transport.

We analyse the different situations where a fluctuation theorem can be proved for a single macroscopic current of a system in a nonequilibrium steady state sustaining several transport processes. We express the conditions under which such a fluctuation theorem will hold in terms of the cycles and transport processes of the network. In this case, a given macroscopic current obeys a fluctuation theorem regardless of the other transport processes.

Reçu le :
Publié le :
DOI : 10.1016/j.crhy.2007.04.016
Keywords: Nonequilibrium steady state, Entropy production, Current fluctuations, Thermodynamic forces, Fluctuation theorem
Mot clés : État stationnaire de non-équilibre, Production d'entropie, Fluctuations de courant, Forces thermodynamiques, Théorème de fluctuations

David Andrieux 1 ; Pierre Gaspard 1

1 Center for Nonlinear Phenomena and Complex Systems, université libre de Bruxelles, code postal 231, campus plaine, B-1050 Brussels, Belgium
@article{CRPHYS_2007__8_5-6_579_0,
     author = {David Andrieux and Pierre Gaspard},
     title = {Network and thermodynamic conditions for a single macroscopic current fluctuation theorem},
     journal = {Comptes Rendus. Physique},
     pages = {579--590},
     publisher = {Elsevier},
     volume = {8},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crhy.2007.04.016},
     language = {en},
}
TY  - JOUR
AU  - David Andrieux
AU  - Pierre Gaspard
TI  - Network and thermodynamic conditions for a single macroscopic current fluctuation theorem
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 579
EP  - 590
VL  - 8
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.04.016
LA  - en
ID  - CRPHYS_2007__8_5-6_579_0
ER  - 
%0 Journal Article
%A David Andrieux
%A Pierre Gaspard
%T Network and thermodynamic conditions for a single macroscopic current fluctuation theorem
%J Comptes Rendus. Physique
%D 2007
%P 579-590
%V 8
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2007.04.016
%G en
%F CRPHYS_2007__8_5-6_579_0
David Andrieux; Pierre Gaspard. Network and thermodynamic conditions for a single macroscopic current fluctuation theorem. Comptes Rendus. Physique, Volume 8 (2007) no. 5-6, pp. 579-590. doi : 10.1016/j.crhy.2007.04.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.04.016/

[1] I. Prigogine Introduction to Thermodynamics of Irreversible Processes, Wiley, New York, 1967

[2] G. Nicolis; I. Prigogine Proc. Natl. Acad. Sci. (USA), 68 (1971), p. 2102

[3] G. Nicolis J. Stat. Phys., 6 (1972), p. 195

[4] G. Nicolis; J.W. Turner Physica A, 89 (1977), p. 326

[5] G. Nicolis; I. Prigogine Self-Organization in Nonequilibrium Systems, Wiley, New York, 1977

[6] Luo Jiu-li; C. Van den Broeck; G. Nicolis Z. Phys. B—Condensed Matter, 56 (1984), p. 165

[7] J. Schnakenberg Rev. Mod. Phys., 48 (1976), p. 571

[8] H.J. Kreuzer; S.H. Payne Theoretical approaches to the kinetics of adsorption, desorption and reactions at surfaces (M. Borowko, ed.), Computational Methods in Surface and Colloid Science, Dekker, New York, 2000, p. 439

[9] T. De Donder; P. Van Rysselberghe Affinity, Stanford Univ. Press, Menlo Park, CA, 1936

[10] P. Gaspard Chaos, Scattering and Statistical Mechanics, Cambridge Univ. Press, Cambridge, UK, 1998

[11] C. Jarzynski Phys. Rev. Lett., 78 (1997), p. 2690

[12] C. Jarzynski J. Stat. Mech. (2004), p. P09005

[13] D.-Q. Jiang; M. Qian; M.-P. Qian Mathematical Theory of Nonequilibrium Steady States, Springer, Berlin, 2004

[14] D.J. Evans; E.G.D. Cohen; G.P. Morriss Phys. Rev. Lett., 71 (1993), p. 2401

[15] D.J. Evans; D.J. Searles Phys. Rev. E, 50 (1994), p. 1645

[16] G. Gallavotti; E.G.D. Cohen Phys. Rev. Lett., 74 (1995), p. 2694

[17] G. Gallavotti Phys. Rev. Lett., 77 (1996), p. 4334

[18] D. Ruelle J. Stat. Phys., 95 (1999), p. 393

[19] J. Kurchan J. Phys. A: Math. Gen., 31 (1998), p. 3719

[20] G.E. Crooks Phys. Rev. E, 60 (1999), p. 2721

[21] J.L. Lebowitz; H. Spohn J. Stat. Phys., 95 (1999), p. 333

[22] C. Maes J. Stat. Phys., 95 (1999), p. 367

[23] C. Maes; K. Netočný J. Stat. Phys., 110 (2003), p. 269

[24] P. Gaspard J. Chem. Phys., 120 (2004), p. 8898

[25] U. Seifert Phys. Rev. Lett., 95 (2005), p. 040602

[26] M. Amman; R. Wilkins; E. Ben-Jacob; P.D. Maker; R.C. Jaklevic Phys. Rev. B, 43 (1991), p. 1146

[27] H. Noji; R. Yasuda; M. Yoshida; K. Kinosita Nature, 386 (1997), p. 299

[28] D. Andrieux; P. Gaspard J. Stat. Mech.: Th. Exp. (2006), p. P01011

[29] D. Andrieux; P. Gaspard Phys. Rev. E, 74 (2006), p. 011906

[30] D. Andrieux; P. Gaspard J. Chem. Phys., 121 (2004), p. 6167

[31] D. Andrieux; P. Gaspard J. Stat. Phys., 127 (2007), p. 107

[32] D. Andrieux; P. Gaspard J. Stat. Mech. (2007), p. P02006

[33] M.-P. Qian; C. Qian; M. Qian Sci. Sinica (Ser. A), 27 (1984), p. 470

[34] T.L. Hill; O. Kedem J. Theor. Biol., 10 (1966), p. 399

[35] T.L. Hill J. Theor. Biol., 10 (1966), p. 442

[36] T.L. Hill Thermodynamics for Chemists and Biologists, Addison–Wesley, Reading, MA, 1968

[37] W. De Roeck; C. Maes | arXiv

[38] C. Jarzynski; O. Mazonka Phys. Rev. E, 59 (1999), p. 6448

Cité par Sources :

Commentaires - Politique