Comptes Rendus
Network and thermodynamic conditions for a single macroscopic current fluctuation theorem
[Conditions thermodynamique et de réseau du théorème de fluctuations pour un seul courant macroscopique]
Comptes Rendus. Physique, Work, dissipation, and fluctuations in nonequilibrium physics, Volume 8 (2007) no. 5-6, pp. 579-590.

Nous analysons les différentes situations où un théorème de fluctuations peut être démontré pour un seul courant macroscopique d'un système dans un état stationnaire de non-équilibre soutenant plusieurs processus de transport. Nous exprimons les conditions sous lesquelles un tel théorème de fluctuations tiendra en termes des cycles et des processus de transport sur le réseau. Dans ce cas, un courant macroscopique donné obéit à un théorème de fluctuations sans implication des autres processus de transport.

We analyse the different situations where a fluctuation theorem can be proved for a single macroscopic current of a system in a nonequilibrium steady state sustaining several transport processes. We express the conditions under which such a fluctuation theorem will hold in terms of the cycles and transport processes of the network. In this case, a given macroscopic current obeys a fluctuation theorem regardless of the other transport processes.

Reçu le :
Publié le :
DOI : 10.1016/j.crhy.2007.04.016
Keywords: Nonequilibrium steady state, Entropy production, Current fluctuations, Thermodynamic forces, Fluctuation theorem
Mots-clés : État stationnaire de non-équilibre, Production d'entropie, Fluctuations de courant, Forces thermodynamiques, Théorème de fluctuations

David Andrieux 1 ; Pierre Gaspard 1

1 Center for Nonlinear Phenomena and Complex Systems, université libre de Bruxelles, code postal 231, campus plaine, B-1050 Brussels, Belgium
@article{CRPHYS_2007__8_5-6_579_0,
     author = {David Andrieux and Pierre Gaspard},
     title = {Network and thermodynamic conditions for a single macroscopic current fluctuation theorem},
     journal = {Comptes Rendus. Physique},
     pages = {579--590},
     publisher = {Elsevier},
     volume = {8},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crhy.2007.04.016},
     language = {en},
}
TY  - JOUR
AU  - David Andrieux
AU  - Pierre Gaspard
TI  - Network and thermodynamic conditions for a single macroscopic current fluctuation theorem
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 579
EP  - 590
VL  - 8
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.04.016
LA  - en
ID  - CRPHYS_2007__8_5-6_579_0
ER  - 
%0 Journal Article
%A David Andrieux
%A Pierre Gaspard
%T Network and thermodynamic conditions for a single macroscopic current fluctuation theorem
%J Comptes Rendus. Physique
%D 2007
%P 579-590
%V 8
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2007.04.016
%G en
%F CRPHYS_2007__8_5-6_579_0
David Andrieux; Pierre Gaspard. Network and thermodynamic conditions for a single macroscopic current fluctuation theorem. Comptes Rendus. Physique, Work, dissipation, and fluctuations in nonequilibrium physics, Volume 8 (2007) no. 5-6, pp. 579-590. doi : 10.1016/j.crhy.2007.04.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.04.016/

[1] I. Prigogine Introduction to Thermodynamics of Irreversible Processes, Wiley, New York, 1967

[2] G. Nicolis; I. Prigogine Proc. Natl. Acad. Sci. (USA), 68 (1971), p. 2102

[3] G. Nicolis J. Stat. Phys., 6 (1972), p. 195

[4] G. Nicolis; J.W. Turner Physica A, 89 (1977), p. 326

[5] G. Nicolis; I. Prigogine Self-Organization in Nonequilibrium Systems, Wiley, New York, 1977

[6] Luo Jiu-li; C. Van den Broeck; G. Nicolis Z. Phys. B—Condensed Matter, 56 (1984), p. 165

[7] J. Schnakenberg Rev. Mod. Phys., 48 (1976), p. 571

[8] H.J. Kreuzer; S.H. Payne Theoretical approaches to the kinetics of adsorption, desorption and reactions at surfaces (M. Borowko, ed.), Computational Methods in Surface and Colloid Science, Dekker, New York, 2000, p. 439

[9] T. De Donder; P. Van Rysselberghe Affinity, Stanford Univ. Press, Menlo Park, CA, 1936

[10] P. Gaspard Chaos, Scattering and Statistical Mechanics, Cambridge Univ. Press, Cambridge, UK, 1998

[11] C. Jarzynski Phys. Rev. Lett., 78 (1997), p. 2690

[12] C. Jarzynski J. Stat. Mech. (2004), p. P09005

[13] D.-Q. Jiang; M. Qian; M.-P. Qian Mathematical Theory of Nonequilibrium Steady States, Springer, Berlin, 2004

[14] D.J. Evans; E.G.D. Cohen; G.P. Morriss Phys. Rev. Lett., 71 (1993), p. 2401

[15] D.J. Evans; D.J. Searles Phys. Rev. E, 50 (1994), p. 1645

[16] G. Gallavotti; E.G.D. Cohen Phys. Rev. Lett., 74 (1995), p. 2694

[17] G. Gallavotti Phys. Rev. Lett., 77 (1996), p. 4334

[18] D. Ruelle J. Stat. Phys., 95 (1999), p. 393

[19] J. Kurchan J. Phys. A: Math. Gen., 31 (1998), p. 3719

[20] G.E. Crooks Phys. Rev. E, 60 (1999), p. 2721

[21] J.L. Lebowitz; H. Spohn J. Stat. Phys., 95 (1999), p. 333

[22] C. Maes J. Stat. Phys., 95 (1999), p. 367

[23] C. Maes; K. Netočný J. Stat. Phys., 110 (2003), p. 269

[24] P. Gaspard J. Chem. Phys., 120 (2004), p. 8898

[25] U. Seifert Phys. Rev. Lett., 95 (2005), p. 040602

[26] M. Amman; R. Wilkins; E. Ben-Jacob; P.D. Maker; R.C. Jaklevic Phys. Rev. B, 43 (1991), p. 1146

[27] H. Noji; R. Yasuda; M. Yoshida; K. Kinosita Nature, 386 (1997), p. 299

[28] D. Andrieux; P. Gaspard J. Stat. Mech.: Th. Exp. (2006), p. P01011

[29] D. Andrieux; P. Gaspard Phys. Rev. E, 74 (2006), p. 011906

[30] D. Andrieux; P. Gaspard J. Chem. Phys., 121 (2004), p. 6167

[31] D. Andrieux; P. Gaspard J. Stat. Phys., 127 (2007), p. 107

[32] D. Andrieux; P. Gaspard J. Stat. Mech. (2007), p. P02006

[33] M.-P. Qian; C. Qian; M. Qian Sci. Sinica (Ser. A), 27 (1984), p. 470

[34] T.L. Hill; O. Kedem J. Theor. Biol., 10 (1966), p. 399

[35] T.L. Hill J. Theor. Biol., 10 (1966), p. 442

[36] T.L. Hill Thermodynamics for Chemists and Biologists, Addison–Wesley, Reading, MA, 1968

[37] W. De Roeck; C. Maes | arXiv

[38] C. Jarzynski; O. Mazonka Phys. Rev. E, 59 (1999), p. 6448

  • Yuhao Jiang; Bingjie Wu; Chen Jia Large deviations and fluctuation theorems for cycle currents defined in the loop-erased and spanning tree manners: A comparative study, Physical Review Research, Volume 5 (2023) no. 1 | DOI:10.1103/physrevresearch.5.013207
  • Alessandra Faggionato; Vittoria Silvestri Fluctuation theorems for discrete kinetic models of molecular motors, Journal of Statistical Mechanics: Theory and Experiment, Volume 2017 (2017) no. 4, p. 043206 | DOI:10.1088/1742-5468/aa6731
  • Hao Ge; Chen Jia; Da-Quan Jiang Cycle symmetry, limit theorems, and fluctuation theorems for diffusion processes on the circle, Stochastic Processes and their Applications, Volume 127 (2017) no. 6, p. 1897 | DOI:10.1016/j.spa.2016.09.011
  • Chen Jia; Da-Quan Jiang; Min-Ping Qian Cycle symmetries and circulation fluctuations for discrete-time and continuous-time Markov chains, The Annals of Applied Probability, Volume 26 (2016) no. 4 | DOI:10.1214/15-aap1152
  • Lorenzo Bertini; Alessandra Faggionato; Davide Gabrielli Flows, currents, and cycles for Markov chains: Large deviation asymptotics, Stochastic Processes and their Applications, Volume 125 (2015) no. 7, p. 2786 | DOI:10.1016/j.spa.2015.02.001
  • Pierre Gaspard Multivariate fluctuation relations for currents, New Journal of Physics, Volume 15 (2013) no. 11, p. 115014 | DOI:10.1088/1367-2630/15/11/115014
  • A C Barato; R Chetrite On the symmetry of current probability distributions in jump processes, Journal of Physics A: Mathematical and Theoretical, Volume 45 (2012) no. 48, p. 485002 | DOI:10.1088/1751-8113/45/48/485002
  • Udo Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines, Reports on Progress in Physics, Volume 75 (2012) no. 12, p. 126001 | DOI:10.1088/0034-4885/75/12/126001
  • Alessandra Faggionato; Daniele Di Pietro Gallavotti–Cohen-Type Symmetry Related to Cycle Decompositions for Markov Chains and Biochemical Applications, Journal of Statistical Physics, Volume 143 (2011) no. 1, p. 11 | DOI:10.1007/s10955-011-0161-7
  • Gregory Bulnes Cuetara; Massimiliano Esposito; Pierre Gaspard Fluctuation theorems for capacitively coupled electronic currents, Physical Review B, Volume 84 (2011) no. 16 | DOI:10.1103/physrevb.84.165114
  • David Andrieux Thermodynamic large fluctuations from uniformized dynamics, Physical Review E, Volume 82 (2010) no. 3 | DOI:10.1103/physreve.82.031124
  • TieJun Xiao; ZhongHuai Hou Fluctuation theorem for entropy production in a chemical reaction channel, Science China Chemistry, Volume 53 (2010) no. 2, p. 396 | DOI:10.1007/s11426-010-0070-7
  • A. Salazar; F. Leyvraz; H. Larralde Fluctuation theorem for currents in the Spinning Lorentz Gas, Physica A: Statistical Mechanics and its Applications, Volume 388 (2009) no. 22, p. 4679 | DOI:10.1016/j.physa.2009.07.035
  • David Andrieux; Pierre Gaspard The fluctuation theorem for currents in semi-Markov processes, Journal of Statistical Mechanics: Theory and Experiment, Volume 2008 (2008) no. 11, p. P11007 | DOI:10.1088/1742-5468/2008/11/p11007
  • T. Bodineau; B. Derrida; Joel L. Lebowitz Vortices in the Two-Dimensional Simple Exclusion Process, Journal of Statistical Physics, Volume 131 (2008) no. 5, p. 821 | DOI:10.1007/s10955-008-9518-y

Cité par 15 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: