Comptes Rendus
Physics/Mathematical physics, theoretical physics
Herzfeld instability versus Mott transition in metal–ammonia solutions
[Instabilité de Herzfeld versus transition de Mott dans les solutions de métaux dans l'ammoniac]
Comptes Rendus. Physique, Volume 8 (2007) no. 3-4, pp. 449-455.

Bien que la plupart des transitions isolant–métal dans les semiconducteurs dopés soient interprétées comme des transitions de Mott, certains systèmes semblent échapper à ce scénario. Les solutions de métaux alcalins dans l'ammoniac en sont un brillant exemple. Elles présentent une séparation de phase dans la gamme de concentration pour laquelle la transition isolant–métal se produit. En utilisant des approximations adéquates pour les fluides quantiques polarisables, nous montrons que l'origine de la transition isolant–métal dans ce système est probablement similaire à celle proposée il y a longtemps par Herzfeld, c'est-à-dire, due aux fluctuations des électrons solvatés. Nous montrons également pourquoi la séparation de phase peut apparaître : l'instabilité de Herzfeld de l'isolant se produit à une concentration pour laquelle la phase métallique est aussi instable. En conséquence, la transition de Mott ne peut pas se produire à basse température. Le scénario proposé ouvre de nouvelles perspectives pour la transition isolant–métal en physique de la matière condensée.

Although most metal–insulator transitions in doped insulators are generally viewed as Mott transitions, some systems seem to deviate from this scenario. Alkali metal–ammonia solutions are a brilliant example of this. They reveal a phase separation in the range of metal concentrations where a metal–insulator transition occurs. Using a mean spherical approximation for quantum polarizable fluids, we argue that the origin of the metal–insulator transition in such a system is likely to be similar to that proposed by Herzfeld a long time ago, namely, due to fluctuations of solvated electrons. We also show how the phase separation may appear: the Herzfeld instability of the insulator occurs at a concentration for which the metallic phase is also unstable. As a consequence, the Mott transition cannot occur at low temperature. The proposed scenario may provide a new insight into the metal–insulator transition in condensed-matter physics.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crhy.2007.05.016
Keywords: Solvated electrons, Mott transition, Phase separation
Mot clés : Electrons solvatés, Transition de Mott, Séparation de phase
Gennady N. Chuev 1, 2 ; Pascal Quémerais 3

1 Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
2 School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
3 Institut Néel, CNRS, BP 166, 38042 Grenoble cedex 9, France
@article{CRPHYS_2007__8_3-4_449_0,
     author = {Gennady N. Chuev and Pascal Qu\'emerais},
     title = {Herzfeld instability versus {Mott} transition in metal{\textendash}ammonia solutions},
     journal = {Comptes Rendus. Physique},
     pages = {449--455},
     publisher = {Elsevier},
     volume = {8},
     number = {3-4},
     year = {2007},
     doi = {10.1016/j.crhy.2007.05.016},
     language = {en},
}
TY  - JOUR
AU  - Gennady N. Chuev
AU  - Pascal Quémerais
TI  - Herzfeld instability versus Mott transition in metal–ammonia solutions
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 449
EP  - 455
VL  - 8
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.05.016
LA  - en
ID  - CRPHYS_2007__8_3-4_449_0
ER  - 
%0 Journal Article
%A Gennady N. Chuev
%A Pascal Quémerais
%T Herzfeld instability versus Mott transition in metal–ammonia solutions
%J Comptes Rendus. Physique
%D 2007
%P 449-455
%V 8
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2007.05.016
%G en
%F CRPHYS_2007__8_3-4_449_0
Gennady N. Chuev; Pascal Quémerais. Herzfeld instability versus Mott transition in metal–ammonia solutions. Comptes Rendus. Physique, Volume 8 (2007) no. 3-4, pp. 449-455. doi : 10.1016/j.crhy.2007.05.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.05.016/

[1] K.F. Herzfeld Phys. Rev., 29 (1927), pp. 701-705

[2] D.A. Goldhammer Dispersion und Absorption des Lichtes in ruhenden isotropen Koerpern; Theorie und ihre Folerungen (mi 28 Textfiguren), Teubner, Leipzig, Berlin, 1913

[3] M. Ross J. Chem. Phys., 56 (1972), pp. 4651-4653

[4] K.-F. Berggren J. Chem. Phys., 60 (1974), pp. 3399-3402

[5] N.C. Pyper; P.P. Edwards J. Am. Chem. Soc., 122 (2000), pp. 5092-5099

[6] B. Edwards; N.W. Ashcroft Nature, 388 (1997), pp. 652-655

[7] N.F. Mott Proc. Phys. Soc. A, 62 (1949), pp. 416-422

[8] S. Fratini; P. Quémerais Eur. Phys. J. B, 29 (2002), pp. 41-49

[9] G. Rastelli; S. Ciuchi Phys. Rev. B, 71 (2006), p. 184303

[10] C.A. Kraus J. Am. Chem. Soc., 29 (1907), pp. 1557-1571

[11] P. Chieux; M.J. Sienko J. Chem. Phys., 53 (1970), pp. 566-570

[12] J.C. Thompson Electrons in Liquid Ammonia, Oxford Univ. Press, London, 1976

[13] P.P. Edwards J. Supercond., 13 (2000), pp. 933-946

[14] J. Jortner J. Chem. Phys., 30 (1959), pp. 839-846

[15] G.J. Martyna; Z. Deng; M.L. Klein J. Chem. Phys., 98 (1993), pp. 555-563

[16] G.N. Chuev; M.V. Fedorov; N. Russo Phys. Rev. B, 67 (2003), p. 125103

[17] G.N. Chuev; M.V. Fedorov; H.J. Luo; D. Kolb; E.G. Timoshenko J. Theor. Comput. Chem., 4 (2005), pp. 751-767

[18] G.A. Thomas J. Phys. Chem., 88 (1984), pp. 3749-3751

[19] J.C. Thompson Rev. Mod. Phys., 40 (1968), pp. 704-710

[20] A.N.M. Barnes; D.J. Turner; L.E. Sutton Trans. Faraday Soc., 67 (1971), pp. 2902-2906

[21] K.K. Mon; N.W. Ashcroft; G.V. Chester Phys. Rev. B, 19 (1979), pp. 5103-5122

[22] S. Lundqvist; A. Sjölander Arkiv for Fysik, 26 (1964), p. 17

[23] G.M. Castellan; F. Seitz Semiconducting Materials, Butterworths, London, 1951

[24] T.G. Castner; N.K. Lee; G.S. Cieloszyk; G.L. Salinger Phys. Rev. Lett., 34 (1975), pp. 1627-1630

[25] D. Chandler; K.S. Schweizer; P.G. Wolynes Phys. Rev. Lett., 49 (1982), pp. 1100-1103

[26] K.S. Schweizer J. Chem. Phys., 85 (1986), pp. 4638-4649

[27] Z. Chen; R.M. Stratt J. Chem. Phys., 95 (1991), pp. 2669-2682

[28] L.R. Pratt Mol. Phys., 40 (1980), pp. 347-360

[29] G. Billaud; A. Demortier J. Phys. Chem., 79 (1975), pp. 3053-3055

[30] Farhataziz; L.M. Perkey J. Phys. Chem., 79 (1975), pp. 1651-1654

[31] D.W. Mahaffey; D.A. Jerde Rev. Mod. Phys., 40 (1968), pp. 710-713

[32] M. Schlauf; G. Schonherr; R. Winter J. de Phys. IV, 1 (1991), pp. 185-190

[33] W.H. Koehler; J.J. Lagowski J. Phys. Chem., 73 (1969), pp. 2329-2335

[34] G. Rubinstein; T.R. Tuttle; S. Golden J. Phys. Chem., 77 (1973), pp. 2872-2877

[35] C. Fiolhais; J.P. Perdew; S.Q. Armster; J.M. MacLaren; M. Brajczewska Phys. Rev. B, 51 (1995), pp. 14001-14011

[36] J.P. Perdew; A. Zunger Phys. Rev. B, 23 (1981), pp. 5048-5079

[37] N.W. Ashcroft J. de Phys. IV, 1 (1991), pp. 169-184

[38] W.K. Freyland; K. Garbade; E. Pfeiffer Phys. Rev. Lett., 51 (1983), pp. 1304-1306

[39] L.J. Schowalter; F.M. Steranka; M.B. Salomon; J.P. Wolfe Phys. Rev. B, 29 (1984), pp. 2970-2985

[40] L.M. Smith; J.P. Wolfe Phys. Rev. Lett., 57 (1986), pp. 2314-2318

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Stability of InP oxide versus solvated electrons in liquid ammonia

A.-M. Gonçalves; N. Simon; S. Channoug; ...

C. R. Chim (2013)