Comptes Rendus
Metamaterials and infra-red applications
[Méta-matériaux pour les applications dans l'infrarouge]
Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 184-196.

Nous donnons une revue des propriétés électromagnétiques des méta-matériaux conçus pour fonctionner dans le domaine infrarouge, en tenant compte de leurs applications potentielles. Nous présentons des dispositifs formés de résonateurs à anneaux métalliques fendus et des lignes de transmission à charge périodique, en insistant sur les aspects de guidage des ondes, sur les règles de design des structures et les techniques de caractérisation. Nous expliquons comment atteindre des fréquences de fonctionnement dans le moyen et lointain infrarouge en brisant des règles d'échelle, et en décrivant les challenges technologiques à résoudre, que l'on choisisse des solutions techniques avec des structures métal/diélectrique ou entièrement diélectriques.

We review the electromagnetic properties of metamaterials aimed at operating at infra-red wavelengths, keeping their potential applications in mind. Split ring resonators and periodically loaded transmission lines are considered with the main emphasis on the guide lines, design rules and characterization techniques. In this context, we address the various routes towards pushing up the operating frequency in the mid- and near- infrared region, with special attention on the breaking of scaling rules and on the technological challenges for metal and full dielectric approaches.

Publié le :
DOI : 10.1016/j.crhy.2007.07.006
Keywords: Negative refractive index materials, Metamaterials, Infra-red, Split ring resonators, Periodically loaded transmission line, Electro-optic sampling, Terahertz technology, Photonic crystals
Mot clés : Matériaux à indice de réfraction négatif, Méta-matériaux, Infrarouge, Ligne de transmission à charge périodique, Échantillonnage électro-optique, Technologie terahertz, Cristaux photoniques

Didier Lippens 1

1 Institut d'électronique de microélectronique et de nanotechnologie, Université des sciences et technologies de Lille, UMR CNRS 8520, avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq cedex, France
@article{CRPHYS_2008__9_2_184_0,
     author = {Didier Lippens},
     title = {Metamaterials and infra-red applications},
     journal = {Comptes Rendus. Physique},
     pages = {184--196},
     publisher = {Elsevier},
     volume = {9},
     number = {2},
     year = {2008},
     doi = {10.1016/j.crhy.2007.07.006},
     language = {en},
}
TY  - JOUR
AU  - Didier Lippens
TI  - Metamaterials and infra-red applications
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 184
EP  - 196
VL  - 9
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.07.006
LA  - en
ID  - CRPHYS_2008__9_2_184_0
ER  - 
%0 Journal Article
%A Didier Lippens
%T Metamaterials and infra-red applications
%J Comptes Rendus. Physique
%D 2008
%P 184-196
%V 9
%N 2
%I Elsevier
%R 10.1016/j.crhy.2007.07.006
%G en
%F CRPHYS_2008__9_2_184_0
Didier Lippens. Metamaterials and infra-red applications. Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 184-196. doi : 10.1016/j.crhy.2007.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.07.006/

[1] V.G. Veselago The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp., Volume 10 (1968) no. 4

[2] D.R. Smith; J.B. Pendry; M.C.K. Wiltshire Science, 10 (2004), pp. 788-792

[3] R.A. Shelby; D.R. Smith; S. Shultz Experimental verification of a negative refraction index, Science, Volume 292 (2001), pp. 77-79

[4] J.B. Pendry; A.J. Holden; D.J. Robbins; W.J. Stewart Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Micro-wave Theory Tech., Volume 47 (1999) no. 11

[5] J.B. Pendry; A.T. Holden; W.J. Stewart; I. Youngs Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett., Volume 76 (1996), p. 4773

[6] G.V. Eleftheriades; A.K. Iyer; P.C. Kremer Planar negative refractive index media using periodically L–C loaded transmission lines, IEEE Trans. Microwave Theory Tech., Volume 50 (2002) no. 12

[7] A. Grbic; V. Eleftheriades Experimental verification of backward-wave radiation from negative refractive index metamaterials, J. Appl. Phys., Volume 92 (2002) no. 10

[8] C.G. Parazzoli; R.B. Greegor; K. Li; B.E.C. Koltenbah; M. Tanelian Experimental verification and simulation of negative index of refraction using Snell's law, Phys. Rev. Lett., Volume 90 (2003), p. 107401

[9] S.O. Brien; D. McPeake; S.A. Ramakrishna; J. Pendry Near-infrared photonic band gap and non linear effects in negative magnetic materials, Phys. Rev. B, Volume 69 (2004), p. 241101

[10] H.O. Moser; B.D.F. Cassa; O. Wilhemi; B.T. Saw Terahertz response of a microfabricated Rod-Split Ring Resonator Electromagnetic Metamaterials, Phys. Rev. Lett., Volume 94 (2005), p. 063901

[11] D.R. Smith; J.B. Pendry; M.C.K. Wiltshire Metamaterials and negative refractive index, Science, Volume 305 (2004), pp. 788-792

[12] R. Moussa; S. Foteinopoulou; L. Zhang; G. Tuttle; K. Guven; E. Ozbay; C.M. Soukoulis Negative refraction and superlens behavior in a two-dimensional photonic crystal, Phys. Rev. B, Volume 71 (2005), p. 085106

[13] M. Bayindir; K. Aydin; E. Ozbay; P. Markos; C.M. Soukoulis Transmission properties of composite metamaterials in free space, Appl. Phys. Lett., Volume 78 (2002), pp. 489-491

[14] T. Decoopman; O. Vanbésien; D. Lippens Demonstration of a backward wave in single split ring resonator and wire loaded finline, IEEE Microwave Opt. Tech. Lett., Volume 14 (2004), pp. 507-509

[15] T. Decoopman; A. Marteau; E. Lheurette; O. Vanbésien; D. Lippens Left-handed electromagnetic properties of split-ring resonator and wire loaded transmission line in a fin-line technology, IEEE Trans. Microwave Theory Techniques, Volume 45 (2006) no. 4, pp. 1451-1457

[16] J. Carbonell; L.J. Rogla; V. Boria; D. Lippens Design, and experimental verification of backward wave propagation in periodic waveguide structures, IEEE Trans. Microwave Theory Techniques, Volume 54 (2006) no. 4

[17] R. Marques; F. Mesa; J. Martel; F. Medina Comparative analysis of edge- and Broadside coupled split ring resonators for metamaterial-design theory and experiments, IEEE Trans. Antennas Propagation, Volume 51 (2003) no. 10, pp. 2572-2581

[18] P.F. Loschiolpo; D.L. Smith; D.W. Forester; F.J. Rachford; J. Schelleng Electromagnetic waves focused by a negative-index planar lens, Phys. Rev. E, Volume 67 (2003), p. 025602

[19] E. Lheurette; O. Vanbésien; D. Lippens Double negative media using interconnected omega-type metallic particles, Microwave Opt. Tech. Lett., Volume 49 (2007) no. 1

[20] D. Lippens, Electromagnétisme des matériaux gauchers, Techniques de l'ingénieur, dossier RE 63, 2005

[21] D. Lippens Réfracter la lumière à l'envers, Pour la Science, Volume 345 (2006), pp. 68-74

[22] M. Gokkavas; K. Guven; I. Bulu; K. Aydin; R.S. Penciu; M. Kafesaki; C.M. Soukoulis; E. Ozbay Experimental demonstration of a left-handed metamaterial operating at 100 GHz, Phys. Rev. B, Volume 73 (2006), p. 193103

[23] D.R. Smith; S. Schultz; P. Markos; C.M. Soukoulis Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. Lett., Volume 65 (2002), p. 195104

[24] J.M. Lerat; N. Malléjac; O. Acher Determination of effective parameters of a metamaterial by field summation method, J. Appl. Phys., Volume 100 (2006), pp. 1-9

[25] T. Crépin; J.F. Lampin; T. Decoopman; X. Mélique; L. Desplanque; D. Lippens Experimental evidence of backward wave on terahertz left-handed transmission lines, Appl. Phys. Lett., Volume 87 (2005) no. 10 (104105-1-3)

[26] S.O. Brien; J.B. Pendry Magnetic activity at infrared frequencies in structures metallic photonic crystals, J. Phys. Condens. Matter, Volume 14 (2002), pp. 6383-6394

[27] W.J. Padilla; A.J. Taylor; C. Highstrete; M. Lee; R.D. Averitt Dynamical electrical and magnetic metamaterial response at terahertz frequencies, Phys. Rev. Lett., Volume 96 (2006), p. 107401

[28] S. Linden; C. Enkrich; M. Wegener; J. Zhou; T. Koschny; C. Soukoulis Magnetic response of metamaterials at 100 THz, Science, Volume 306 (2004), pp. 1351-1354

[29] V. Podoskiy; A.K. Sarychev; V.M. Shalaev Plasmon modes and negative refraction in metal nanowire composite, Opt. Express, Volume 11 (2003), pp. 735-745

[30] A.N. Grigorenko; A.K. Geim; H.F. Gleeson; Y. Zhang; A.A. Firsov; I.Y. Khrushchev; J. Petrovic Nanofabricated media with negative permeability at visible frequencies, Nature, Volume 43 (2005), pp. 335-338

[31] M. Perrin; S. Fasquel; T. Decoopman; X. Mélique; O. Vanbésien; E. Lheurette; D. Lippens Left handed electromagnetism obtained via nanostructures metamaterials: comparison with that from microstructured photonic crystals, J. Opt. A: Pure Appl. Opt., Volume 7 (2005), p. S3-S11

[32] S. Fasquel; X. Mélique; O. Vanbésien; D. Lippens Three dimensional calculation of propagation losses in photonic, Crystal Waveguides Opt. Commun., Volume 246 (2005) no. 1–3, pp. 91-96

[33] J.B. Pendry Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000), pp. 3966-3969

[34] A. Grbic; G.V. Eleftheriades Overcoming the diffraction limit with planar left-handed transmission lens, Phys. Rev. Lett., Volume 92 (2004), p. 117403

[35] N. Fang; H. Lee; C. Sun; X. Zhang Subdiffraction-limited optical imaging with a silver superlens, Science, Volume 308 (2005), pp. 534-537

[36] J.B. Pendry; D. Shurig; D.R. Smith Controlling electromagnetic waves www.sciencexprss.orgt/25May2006/page1/10.1126/science.1125907 (Science-express)

Cité par Sources :

Commentaires - Politique