We review the electromagnetic properties of metamaterials aimed at operating at infra-red wavelengths, keeping their potential applications in mind. Split ring resonators and periodically loaded transmission lines are considered with the main emphasis on the guide lines, design rules and characterization techniques. In this context, we address the various routes towards pushing up the operating frequency in the mid- and near- infrared region, with special attention on the breaking of scaling rules and on the technological challenges for metal and full dielectric approaches.
Nous donnons une revue des propriétés électromagnétiques des méta-matériaux conçus pour fonctionner dans le domaine infrarouge, en tenant compte de leurs applications potentielles. Nous présentons des dispositifs formés de résonateurs à anneaux métalliques fendus et des lignes de transmission à charge périodique, en insistant sur les aspects de guidage des ondes, sur les règles de design des structures et les techniques de caractérisation. Nous expliquons comment atteindre des fréquences de fonctionnement dans le moyen et lointain infrarouge en brisant des règles d'échelle, et en décrivant les challenges technologiques à résoudre, que l'on choisisse des solutions techniques avec des structures métal/diélectrique ou entièrement diélectriques.
Mot clés : Matériaux à indice de réfraction négatif, Méta-matériaux, Infrarouge, Ligne de transmission à charge périodique, Échantillonnage électro-optique, Technologie terahertz, Cristaux photoniques
Didier Lippens 1
@article{CRPHYS_2008__9_2_184_0, author = {Didier Lippens}, title = {Metamaterials and infra-red applications}, journal = {Comptes Rendus. Physique}, pages = {184--196}, publisher = {Elsevier}, volume = {9}, number = {2}, year = {2008}, doi = {10.1016/j.crhy.2007.07.006}, language = {en}, }
Didier Lippens. Metamaterials and infra-red applications. Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 184-196. doi : 10.1016/j.crhy.2007.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.07.006/
[1] The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp., Volume 10 (1968) no. 4
[2] Science, 10 (2004), pp. 788-792
[3] Experimental verification of a negative refraction index, Science, Volume 292 (2001), pp. 77-79
[4] Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Micro-wave Theory Tech., Volume 47 (1999) no. 11
[5] Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett., Volume 76 (1996), p. 4773
[6] Planar negative refractive index media using periodically L–C loaded transmission lines, IEEE Trans. Microwave Theory Tech., Volume 50 (2002) no. 12
[7] Experimental verification of backward-wave radiation from negative refractive index metamaterials, J. Appl. Phys., Volume 92 (2002) no. 10
[8] Experimental verification and simulation of negative index of refraction using Snell's law, Phys. Rev. Lett., Volume 90 (2003), p. 107401
[9] Near-infrared photonic band gap and non linear effects in negative magnetic materials, Phys. Rev. B, Volume 69 (2004), p. 241101
[10] Terahertz response of a microfabricated Rod-Split Ring Resonator Electromagnetic Metamaterials, Phys. Rev. Lett., Volume 94 (2005), p. 063901
[11] Metamaterials and negative refractive index, Science, Volume 305 (2004), pp. 788-792
[12] Negative refraction and superlens behavior in a two-dimensional photonic crystal, Phys. Rev. B, Volume 71 (2005), p. 085106
[13] Transmission properties of composite metamaterials in free space, Appl. Phys. Lett., Volume 78 (2002), pp. 489-491
[14] Demonstration of a backward wave in single split ring resonator and wire loaded finline, IEEE Microwave Opt. Tech. Lett., Volume 14 (2004), pp. 507-509
[15] Left-handed electromagnetic properties of split-ring resonator and wire loaded transmission line in a fin-line technology, IEEE Trans. Microwave Theory Techniques, Volume 45 (2006) no. 4, pp. 1451-1457
[16] Design, and experimental verification of backward wave propagation in periodic waveguide structures, IEEE Trans. Microwave Theory Techniques, Volume 54 (2006) no. 4
[17] Comparative analysis of edge- and Broadside coupled split ring resonators for metamaterial-design theory and experiments, IEEE Trans. Antennas Propagation, Volume 51 (2003) no. 10, pp. 2572-2581
[18] Electromagnetic waves focused by a negative-index planar lens, Phys. Rev. E, Volume 67 (2003), p. 025602
[19] Double negative media using interconnected omega-type metallic particles, Microwave Opt. Tech. Lett., Volume 49 (2007) no. 1
[20] D. Lippens, Electromagnétisme des matériaux gauchers, Techniques de l'ingénieur, dossier RE 63, 2005
[21] Réfracter la lumière à l'envers, Pour la Science, Volume 345 (2006), pp. 68-74
[22] Experimental demonstration of a left-handed metamaterial operating at 100 GHz, Phys. Rev. B, Volume 73 (2006), p. 193103
[23] Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. Lett., Volume 65 (2002), p. 195104
[24] Determination of effective parameters of a metamaterial by field summation method, J. Appl. Phys., Volume 100 (2006), pp. 1-9
[25] Experimental evidence of backward wave on terahertz left-handed transmission lines, Appl. Phys. Lett., Volume 87 (2005) no. 10 (104105-1-3)
[26] Magnetic activity at infrared frequencies in structures metallic photonic crystals, J. Phys. Condens. Matter, Volume 14 (2002), pp. 6383-6394
[27] Dynamical electrical and magnetic metamaterial response at terahertz frequencies, Phys. Rev. Lett., Volume 96 (2006), p. 107401
[28] Magnetic response of metamaterials at 100 THz, Science, Volume 306 (2004), pp. 1351-1354
[29] Plasmon modes and negative refraction in metal nanowire composite, Opt. Express, Volume 11 (2003), pp. 735-745
[30] Nanofabricated media with negative permeability at visible frequencies, Nature, Volume 43 (2005), pp. 335-338
[31] Left handed electromagnetism obtained via nanostructures metamaterials: comparison with that from microstructured photonic crystals, J. Opt. A: Pure Appl. Opt., Volume 7 (2005), p. S3-S11
[32] Three dimensional calculation of propagation losses in photonic, Crystal Waveguides Opt. Commun., Volume 246 (2005) no. 1–3, pp. 91-96
[33] Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000), pp. 3966-3969
[34] Overcoming the diffraction limit with planar left-handed transmission lens, Phys. Rev. Lett., Volume 92 (2004), p. 117403
[35] Subdiffraction-limited optical imaging with a silver superlens, Science, Volume 308 (2005), pp. 534-537
[36] Controlling electromagnetic waves www.sciencexprss.orgt/25May2006/page1/10.1126/science.1125907 (Science-express)
Cited by Sources:
Comments - Policy