Laser terahertz (THz) emission microscopy (LTEM) is reviewed. Femtosecond lasers can excite THz waves in various electronic materials due to ultrafast current modulation. The current modulation is realized by the acceleration or deceleration of photo-excited carriers, and thus LTEM visualizes the dynamic photo-response of substances. We construct a free-space type and scanning probe type with transmission or reflection modes. The developed systems have a minimum spatial resolution better than 2 μm, which is defined by the laser beam diameter. We present some examples of LTEM applications, such as ferroelectric domain imaging, quantitative supercurrent distribution in high- superconductors, defect detection of MOS devices as well as the visualization of the photo-responses in materials and devices.
Nous présentons une revue des recherches concernant la microscopie à émission térahertz photo-déclenchée. Des impulsions lasers de durée femtoseconde peuvent générer des ondes THz dans la plupart des semi-conducteurs de l'électronique, par l'intermédiaire du courant impulsionnel photogénéré. Ce courant est produit par l'accélération des photo-porteurs, et la microscopie à émission THz permet une visualisation résolue en temps de ce courant, donc du champ électrique à la surface des échantillons. Nous avons construit des sondes permettant un balayage spatial travaillant en mode de réflexion ou de transmission. Les systèmes réalisés montrent une résolution spatiale minimum meilleure que 2 μm, qui est définie par la taille du spot laser. Nous présentons quelques exemples d'application de ce microscope telle que l'imagerie de domaines ferroélectriques, la distribution quantitative du super-courant dans les supraconducteurs à haut , la détection de défauts dans des structures CMOS et la visualisation de la réponse de matériaux et dispositifs.
Mot clés : Émission térahertz, Imagerie laser à balayage, BiFeO, Supraconducteurs, LSI
Hironaru Murakami 1; Masayoshi Tonouchi 1
@article{CRPHYS_2008__9_2_169_0, author = {Hironaru Murakami and Masayoshi Tonouchi}, title = {Laser terahertz emission microscopy}, journal = {Comptes Rendus. Physique}, pages = {169--183}, publisher = {Elsevier}, volume = {9}, number = {2}, year = {2008}, doi = {10.1016/j.crhy.2007.07.010}, language = {en}, }
Hironaru Murakami; Masayoshi Tonouchi. Laser terahertz emission microscopy. Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 169-183. doi : 10.1016/j.crhy.2007.07.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.07.010/
[1] Cutting-edge terahertz technology, Nature Photonics, Volume 1 (2007), pp. 97-105
[2] Picosecond photoconducting Hertzian dipoles, Appl. Phys. Lett., Volume 45 (1984), pp. 284-286
[3] Anomalous optically rectification from metal/GaAs interfaces, Appl. Phys. Lett., Volume 65 (1994), pp. 682-684
[4] Optically induced electromagnetic radiation from semiconductor surfaces, Appl. Phys. Lett., Volume 56 (1990), pp. 1011-1013
[5] Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse, Jpn. J. Appl. Phys., Volume 35 (1996), pp. 2624-2632
[6] Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection, Appl. Phys. Lett., Volume 59 (1991), pp. 1972-1974
[7] Design and performance of singular electric field terahertz photoconducting antennas, Appl. Phys. Lett., Volume 71 (1997), pp. 2076-2078
[8] Imaging with terahertz waves, Opt. Lett., Volume 20 (1995), pp. 1716-1718
[9] Recent advantages in terahertz imaging, Appl. Phys. B, Volume 68 (1999), pp. 1085-1094
[10] T-ray imaging, IEEE J. Sel. Top. Quantum Electron., Volume 2 (1996), p. 679
[11] Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Opt. Exp., Volume 11 (2003), pp. 2549-2554
[12] Near-field terahertz imaging with a dynamic aperture, Opt. Lett., Volume 25 (2000), pp. 1122-1124
[13] Collection-mode near-field imaging with 0.5-THz pulses, IEEE J. Sel. Top. Quantum Elecron., Volume 7 (2001), pp. 600-607
[14] Identification of a resonant imaging process in apertureless near-field microscopy, Phys. Rev. Lett., Volume 93 (2004), p. 267401
[15] Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip, Appl. Phys. Lett., Volume 81 (2002), pp. 1558-1560
[16] Terahertz imaging with nanometer resolution, Appl. Phys. Lett., Volume 83 (2003), pp. 3009-3011
[17] Opto-electronic pulsed THz systems, Semicond. Sci. Technol., Volume 20 (2005), p. S121-S127
[18] Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy, Phys. Rev. B, Volume 49 (1994), pp. 6185-6187
[19] THz time-domain spectroscopy of high substrates, Appl. Phys. Lett., Volume 57 (1990), pp. 1055-1057
[20] Terahertz surface resistance of high temperature superconducting thin films, J. Appl. Phys., Volume 87 (2000), pp. 2984-2988
[21] Low-energy charge dynamics in La0.7Ca0.3MnO3: THz time-domain spectroscopic studies, Phys. Rev. B, Volume 62 (2000), p. R11965-R11968
[22] Partial and macroscopic phase coherences in an underdoped Bi2Sr2CaCu2O8+δ thin film, Europhys. Lett., Volume 60 (2002), pp. 288-294
[23] Observation of supercurrent distribution in YBa2Cu3O7 thin films using THz radiation excited with femtosecond laser pulses, Appl. Phys. Lett., Volume 74 (1999), pp. 1317-1319
[24] Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7 thin film strips, J. Appl. Phys., Volume 87 (2000), pp. 7366-7375
[25] Laser terahertz-emission microscope for inspecting electrical failures in integrated circuits, Opt. Lett., Volume 28 (2003), pp. 2058-2060
[26] Vector imaging of supercurrent flow in YBa2Cu3O7−δ thin films using terahertz radiation, Appl. Phys. Lett., Volume 75 (1999), pp. 3387-3389
[27] Imaging of large-scale integrated circuits using laser terahertz emission microscopy, Opt. Express, Volume 13 (2005), pp. 115-120
[28] M. Yamashita, K. Kawase, C. Otani, K. Nikawa, M. Tonouchi, Observation of MOSFETs without bias voltage using a laser-THz emission microscope, CLEO2005, 2005, pp. 2117–2119
[29] M. Yamashita, K. Nikawa, M. Tonouchi, C. Otani, K. Kawase, Backside observation of MOSFET chips using an infrared laser THz emission microscope, in: Proc. The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005, pp. 642–643
[30] Influence of Mn doping on ferroelectric-antiferromagnet BiFeO3 thin films grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates, Jpn. J. Appl. Phys., Volume 25 (2006) no. 29, p. L755-L757
[31] Terahertz radiation by an ultrafast spontaneous polarization modulation of multiferroic BiFeO3 thin films, Phys. Rev. Lett., Volume 96 (2006), pp. 117402-117405
[32] Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7−δ thin film strips, J. Appl. Phys., Volume 87 (2000), pp. 7366-7375
[33] Terahertz radiation imaging of vortices penetrated into YBCO thin films, IEEE Trans. Appl. Supercond., Volume 11 ( March 2001 ) no. 1, pp. 3230-3233
[34] LSI failure analysis using focused laser beam heating, Microelectron. Reliab., Volume 37 (1997), pp. 1841-1847
[35] Laser-SQUID microscope for LSI chip defect analysis (T. Kobayashi; H. Hirakawa; M. Tonouchi, eds.), Vortex Electronics and SQUIDs, Springer, Berlin, 2003, pp. 224-232
[36] Recent topics in high- superconductive electronics, Jpn. J. Appl. Phys., Volume 44 (2005) no. 11, pp. 7735-7749
Cited by Sources:
Comments - Policy