Recent advances in the development of monochromatic continuous-wave terahertz sources suitable for high resolution gas phase spectroscopy and pollution monitoring are reviewed. Details of a source using an ultra fast opto-electronic photomixing element are presented. The construction of a terahertz spectrometer using this source has allowed spectroscopic characterisation and application studies to be completed. Analysis of H2S and OCS under laboratory conditions are used to demonstrate the spectrometer performance, and the determination of the transition line strengths and pressure self broadening coefficients for pure rotational transitions of OCS. The spectral purity 5 MHz, tunability 0.3 to 3 THz, and long wavelength of this source have been exploited to identify and quantify numerous chemical species in cigarette smoke. The key advantages of this frequency domain are its high species selectivity and the possibility to make reliable measurements of gas phase samples heavily contaminated by aerosols and particles.
Cet article résume les récentes avancées dans le développement de sources monochromatiques et continues d'ondes térahertz utilisées dans des expériences de spectroscopie à haute résolution en phase gazeuse, consacrées à la métrologie de polluants. Les caractéristiques d'une source optoélectronique employant un photomélangeur ultrarapide sont détaillées ainsi que son emploi dans la réalisation d'un spectromètre térahertz utilisé dans diverses applications spectroscopiques. L'analyse de H2S et OCS a permis d'une part de valider les performances du spectromètre conçu et d'autre part de déterminer des paramètres spectroscopiques tels que les forces de raie et les coefficients d'élargissement par pression associés aux transitions rotationnelles d'OCS. La pureté spectrale (5 MHz), l'accordabilitié de 0,3 à 3 THz et la longueur d'onde importante () de cette source ont été exploitées pour identifier et quantifier des espèces chimiques dans la fumée de cigarette. Les expériences réalisées tirent avantage du rayonnement térahertz qui offre une haute sélectivité et permet de réaliser des mesures dans des échantillons gazeux largement contaminés par de nombreux aérosols et particules.
Mot clés : Térahertz, Gaz polluants
Francis Hindle 1; Arnaud Cuisset 1; Robin Bocquet 1; Gaël Mouret 1
@article{CRPHYS_2008__9_2_262_0, author = {Francis Hindle and Arnaud Cuisset and Robin Bocquet and Ga\"el Mouret}, title = {Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification}, journal = {Comptes Rendus. Physique}, pages = {262--275}, publisher = {Elsevier}, volume = {9}, number = {2}, year = {2008}, doi = {10.1016/j.crhy.2007.07.009}, language = {en}, }
TY - JOUR AU - Francis Hindle AU - Arnaud Cuisset AU - Robin Bocquet AU - Gaël Mouret TI - Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification JO - Comptes Rendus. Physique PY - 2008 SP - 262 EP - 275 VL - 9 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2007.07.009 LA - en ID - CRPHYS_2008__9_2_262_0 ER -
%0 Journal Article %A Francis Hindle %A Arnaud Cuisset %A Robin Bocquet %A Gaël Mouret %T Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification %J Comptes Rendus. Physique %D 2008 %P 262-275 %V 9 %N 2 %I Elsevier %R 10.1016/j.crhy.2007.07.009 %G en %F CRPHYS_2008__9_2_262_0
Francis Hindle; Arnaud Cuisset; Robin Bocquet; Gaël Mouret. Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification. Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 262-275. doi : 10.1016/j.crhy.2007.07.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.07.009/
[1] Precision broad-band spectroscopy in the terahertz region, Journal of Molecular Spectroscopy, Volume 165 (1994) no. 1, pp. 294-300
[2] Rotational spectrum of hydrazine in the submillimeter range, Journal of Molecular Spectroscopy, Volume 216 (2002) no. 2, pp. 501-504
[3] A far-infrared heterodyne side-band spectrometer, Journal de Physique III, Volume 4 (1994) no. 8, pp. 1467-1480
[4] Tunable far infrared-laser spectrometers, Review of Scientific Instruments, Volume 62 (1991) no. 7, pp. 1693-1700
[5] A far infrared-laser sideband spectrometer in the frequency region 550–2700 GHz, Review of Scientific Instruments, Volume 61 (1990) no. 6, pp. 1612-1625
[6] Terahertz laser sideband spectroscopy with backward wave oscillators, Journal of Molecular Spectroscopy, Volume 183 (1997) no. 1, pp. 207-209
[7] The AILES infrared beamline on the third generation synchrotron radiation facility SOLEIL, Infrared Physics and Technology, Volume 49 (2006) no. 1–2, pp. 139-146
[8] Extension in far-infrared of the CLIO free-electron laser, Infrared Physics and Technology, Volume 49 (2006) no. 1–2, pp. 133-138
[9] High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser, Applied Physics Letters, Volume 89 (2006) no. 6, p. 061115
[10] Subpicosecond electrooptic shock-waves, Applied Physics Letters, Volume 43 (1983) no. 8, pp. 713-715
[11] Coherent time-domain far-infrared spectroscopy, Journal of the Optical Society of America B—Optical Physics, Volume 2 (1985) no. 4, pp. 606-612
[12] Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy, Applied Optics, Volume 38 (1999) no. 2, pp. 409-415
[13] A reliable method for extraction of material parameters in terahertz time-domain spectroscopy, IEEE Journal of Selected Topics in Quantum Electronics, Volume 2 (1996) no. 3, pp. 739-746
[14] Sensing with Terahertz Radiation, Springer-Verlag, Berlin, 2003
[16] http://www.picometrix.com/
[17] TeraView Ltd
[18] One-to-two millimeter wave spectroscopy. IV. Experimental methods and results for OCS, CH3F, and H2O, Phys. Rev., Volume 93 (1954), pp. 407-412
[19] The submillimeter-wave rotational spectrum of methyl cyanide—analysis of the ground and the low-lying excited vibrational-states, Journal of Molecular Spectroscopy, Volume 127 (1988) no. 2, pp. 382-389
[20] Continuously tunable coherent spectroscopy for the 0.1–1.0-THz region, Applied Physics Letters, Volume 42 (1983) no. 4, pp. 309-310
[21] High resolution rotation-inversion spectroscopy on doubly deuterated ammonia, ND2H, up to 2.6 THz, Journal of Molecular Structure, Volume 795 (2006) no. 1–3, pp. 242-255
[22] Opening the terahertz window with integrated diode circuits, IEEE Journal of Solid-State Circuits, Volume 40 (2005) no. 10, pp. 2104-2110
[23] Tunable far-infrared spectroscopy, Applied Physics Letters, Volume 44 (1984) no. 6, pp. 576-578
[24] Tunable far-infrared spectroscopy extended to 9.1 THz, Optics Letters, Volume 24 (1999) no. 6, pp. 406-407
[25] Photomixing up to 3.8-THz in low-temperature-grown GaAs, Applied Physics Letters, Volume 66 (1995) no. 3, pp. 285-287
[26] Terahertz photomixing with diode lasers in low-temperature-grown GaAs, Applied Physics Letters, Volume 67 (1995) no. 26, pp. 3844-3846
[27] A terahertz photomixing spectrometer: Application to SO2 self broadening, Journal of Molecular Spectroscopy, Volume 175 (1996) no. 1, pp. 37-47
[28] Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes, Semiconductor Science and Technology, Volume 20 (2005) no. 7, p. S191-S198
[29] Femtosecond demodulation source for high-resolution submillimeter spectroscopy, Applied Physics Letters, Volume 67 (1995) no. 25, pp. 3810-3812
[30] Far-infrared spectroscopy of small polycyclic aromatic hydrocarbons, Physical Chemistry Chemical Physics, Volume 8 (2006) no. 32, pp. 3707-3714
[31] THz laser study of self-pressure and temperature broadening and shifts of water vapor lines for pressures up to 1.4 KPa, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 87 (2004) no. 3–4, pp. 377-385
[32] Measurements of (nh3)-n-14 in the nu(2) = 1 state by a solid-state, photomixing, THz spectrometer, and a simultaneous analysis of the microwave, terahertz, and infrared transitions between the ground and nu(2) inversion–rotation levels, Journal of Molecular Spectroscopy, Volume 236 (2006) no. 1, pp. 116-126
[33] http://www.iemn.univ-lille1.fr/
[34] Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector, Applied Physics Letters, Volume 81 (2002) no. 7, pp. 1174-1176
[35] Anomalous dispersion measurement in terahertz frequency region by photomixing, Applied Physics Letters, Volume 88 (2006) no. 18, p. 181105
[36] Pure rotational spectrum of H2S in the far-infrared region measured by FTIR spectroscopy, Journal of Molecular Spectroscopy, Volume 166 (1994) no. 2, pp. 395-405
[37] http://www-phlam.univ-lille1.fr/
[38] Terahertz spectroscopy applied to the measurement of strengths and self-broadening coefficients for high-J lines of OCS, Journal of Molecular Spectroscopy, Volume 239 ( October 2006 ), pp. 182-189
[39] S. Matton, Generation de rayonnement terahertz par photomelange et developpement d'une detection homodyne. Application a la caracterisation de polluants atmospheriques et de milieux dielectriques, PhD thesis, Université du Littoral Côte d'Opale, 2004
[40] Microwave Molecular Spectra, John Wiley and Sons, New York, 1984
[41] Stark effect and hyperfine structure of hydrogen fluoride, Physical Review, Volume 131 (1963) no. 2, pp. 659-665
[42] Smoke chemistry (D.E.L. Davis; M.T. Nielsen, eds.), Tobacco: Production, Chemistry and Technology, Blackwell Science, London, 1999 (ISBN: 0632047917)
[43] D. Bigourd, Etude et detection de polluants atmospheriques dans le domaine THz, PhD thesis, Universite du Littoral Cote d'Opale, 2006
[44] The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 96 (2005) no. 2, pp. 139-204 http://www.hitran.com
[45] Cologne database for molecular spectroscopy http://www.ph1.uni-koeln.de/vorhersagen/
[46] http://physics.nist.gov/PhysRefData/MolSpec/index.html
[47] http://spec.jpl.nasa.gov/
[48] Gestion et étude des informations spectroscopiques et atmospheriques http://ara.lmd.polytechnique.fr/htdocs-public/products/GEISA/HTML-GEISA/index.html
[49] Determination of tar, nicotine, and carbon monoxide yields in the mainstream smoke of selected international cigarettes, Tobacco Control, Volume 13 (2004) no. 1, pp. 45-51
[50] N. Masalehdami, J. Potdevin, F. Cazier, D. Courcot, in: Int. Conf. on Coal Fire Research, 2005, pp. 101–103
Cited by Sources:
Comments - Policy