Comptes Rendus
Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification
Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 262-275.

Recent advances in the development of monochromatic continuous-wave terahertz sources suitable for high resolution gas phase spectroscopy and pollution monitoring are reviewed. Details of a source using an ultra fast opto-electronic photomixing element are presented. The construction of a terahertz spectrometer using this source has allowed spectroscopic characterisation and application studies to be completed. Analysis of H2S and OCS under laboratory conditions are used to demonstrate the spectrometer performance, and the determination of the transition line strengths and pressure self broadening coefficients for pure rotational transitions of OCS. The spectral purity 5 MHz, tunability 0.3 to 3 THz, and long wavelength 200 μm of this source have been exploited to identify and quantify numerous chemical species in cigarette smoke. The key advantages of this frequency domain are its high species selectivity and the possibility to make reliable measurements of gas phase samples heavily contaminated by aerosols and particles.

Cet article résume les récentes avancées dans le développement de sources monochromatiques et continues d'ondes térahertz utilisées dans des expériences de spectroscopie à haute résolution en phase gazeuse, consacrées à la métrologie de polluants. Les caractéristiques d'une source optoélectronique employant un photomélangeur ultrarapide sont détaillées ainsi que son emploi dans la réalisation d'un spectromètre térahertz utilisé dans diverses applications spectroscopiques. L'analyse de H2S et OCS a permis d'une part de valider les performances du spectromètre conçu et d'autre part de déterminer des paramètres spectroscopiques tels que les forces de raie et les coefficients d'élargissement par pression associés aux transitions rotationnelles d'OCS. La pureté spectrale (5 MHz), l'accordabilitié de 0,3 à 3 THz et la longueur d'onde importante (200 μm) de cette source ont été exploitées pour identifier et quantifier des espèces chimiques dans la fumée de cigarette. Les expériences réalisées tirent avantage du rayonnement térahertz qui offre une haute sélectivité et permet de réaliser des mesures dans des échantillons gazeux largement contaminés par de nombreux aérosols et particules.

Published online:
DOI: 10.1016/j.crhy.2007.07.009
Keywords: Terahertz, Gas phase pollutants
Mot clés : Térahertz, Gaz polluants

Francis Hindle 1; Arnaud Cuisset 1; Robin Bocquet 1; Gaël Mouret 1

1 Laboratoire de physico-chimie de l'atmosphère, UMR CNRS 8101, Université du Littoral Côte d'Opale, 189A, avenue Maurice-Schumann, 59140 Dunkerque, France
@article{CRPHYS_2008__9_2_262_0,
     author = {Francis Hindle and Arnaud Cuisset and Robin Bocquet and Ga\"el Mouret},
     title = {Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification},
     journal = {Comptes Rendus. Physique},
     pages = {262--275},
     publisher = {Elsevier},
     volume = {9},
     number = {2},
     year = {2008},
     doi = {10.1016/j.crhy.2007.07.009},
     language = {en},
}
TY  - JOUR
AU  - Francis Hindle
AU  - Arnaud Cuisset
AU  - Robin Bocquet
AU  - Gaël Mouret
TI  - Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 262
EP  - 275
VL  - 9
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.07.009
LA  - en
ID  - CRPHYS_2008__9_2_262_0
ER  - 
%0 Journal Article
%A Francis Hindle
%A Arnaud Cuisset
%A Robin Bocquet
%A Gaël Mouret
%T Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification
%J Comptes Rendus. Physique
%D 2008
%P 262-275
%V 9
%N 2
%I Elsevier
%R 10.1016/j.crhy.2007.07.009
%G en
%F CRPHYS_2008__9_2_262_0
Francis Hindle; Arnaud Cuisset; Robin Bocquet; Gaël Mouret. Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification. Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 262-275. doi : 10.1016/j.crhy.2007.07.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.07.009/

[1] G. Winnewisser; A. Krupnov; M. Tretyakov; M. Liedtke; F. Lewen; A. Saleck; R. Schieder; A. Shkaev; S. Volokhov Precision broad-band spectroscopy in the terahertz region, Journal of Molecular Spectroscopy, Volume 165 (1994) no. 1, pp. 294-300

[2] M. Kreglewski; J. Cosleou; G. Wlodarczak Rotational spectrum of hydrazine in the submillimeter range, Journal of Molecular Spectroscopy, Volume 216 (2002) no. 2, pp. 501-504

[3] D. Boucher; R. Bocquet; J. Burie; W. Chen A far-infrared heterodyne side-band spectrometer, Journal de Physique III, Volume 4 (1994) no. 8, pp. 1467-1480

[4] G. Blake; K. Laughlin; R. Cohen; K. Busarow; D. Gwo; C. Schmuttenmaer; D. Steyert; R. Saykally Tunable far infrared-laser spectrometers, Review of Scientific Instruments, Volume 62 (1991) no. 7, pp. 1693-1700

[5] P. Verhoeve; E. Zwart; M. Versluis; M. Drabbels; J. Termeulen; W. Meerts; A. Dymanus; D. Mclay A far infrared-laser sideband spectrometer in the frequency region 550–2700 GHz, Review of Scientific Instruments, Volume 61 (1990) no. 6, pp. 1612-1625

[6] F. Lewen; E. Michael; R. Gendriesch; J. Stutzki; G. Winnewisser Terahertz laser sideband spectroscopy with backward wave oscillators, Journal of Molecular Spectroscopy, Volume 183 (1997) no. 1, pp. 207-209

[7] P. Roy; M. Rouzieres; Z. Qi; O. Chubar The AILES infrared beamline on the third generation synchrotron radiation facility SOLEIL, Infrared Physics and Technology, Volume 49 (2006) no. 1–2, pp. 139-146

[8] J. Ortega; F. Glotin; R. Prazeres Extension in far-infrared of the CLIO free-electron laser, Infrared Physics and Technology, Volume 49 (2006) no. 1–2, pp. 133-138

[9] H. Hubers; S. Pavlov; H. Richter; A. Semenov; L. Mahler; A. Tredicucci; H. Beere; D. Ritchie High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser, Applied Physics Letters, Volume 89 (2006) no. 6, p. 061115

[10] D. Auston Subpicosecond electrooptic shock-waves, Applied Physics Letters, Volume 43 (1983) no. 8, pp. 713-715

[11] D. Auston; K. Cheung Coherent time-domain far-infrared spectroscopy, Journal of the Optical Society of America B—Optical Physics, Volume 2 (1985) no. 4, pp. 606-612

[12] L. Duvillaret; F. Garet; J. Coutaz Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy, Applied Optics, Volume 38 (1999) no. 2, pp. 409-415

[13] L. Duvillaret; F. Garet; J. Coutaz A reliable method for extraction of material parameters in terahertz time-domain spectroscopy, IEEE Journal of Selected Topics in Quantum Electronics, Volume 2 (1996) no. 3, pp. 739-746

[14] D. Mittleman Sensing with Terahertz Radiation, Springer-Verlag, Berlin, 2003

[15] Nikon http://www.nikon.co.jp

[16] Picometrix http://www.picometrix.com/

[17] TeraView Ltd

[18] W. King; W. Gordy One-to-two millimeter wave spectroscopy. IV. Experimental methods and results for OCS, CH3F, and H2O, Phys. Rev., Volume 93 (1954), pp. 407-412

[19] R. Bocquet; G. Wlodarczak; A. Bauer; J. Demaison The submillimeter-wave rotational spectrum of methyl cyanide—analysis of the ground and the low-lying excited vibrational-states, Journal of Molecular Spectroscopy, Volume 127 (1988) no. 2, pp. 382-389

[20] P. Helminger; J. Messer; F. Delucia Continuously tunable coherent spectroscopy for the 0.1–1.0-THz region, Applied Physics Letters, Volume 42 (1983) no. 4, pp. 309-310

[21] C. Endres; H. Muller; S. Brunken; D. Paveliev; T. Giesen; S. Schlemmer; F. Lewen High resolution rotation-inversion spectroscopy on doubly deuterated ammonia, ND2H, up to 2.6 THz, Journal of Molecular Structure, Volume 795 (2006) no. 1–3, pp. 242-255

[22] T. Crowe; W. Bishop; D. Porterfield; J. Hesler; R. Weikle Opening the terahertz window with integrated diode circuits, IEEE Journal of Solid-State Circuits, Volume 40 (2005) no. 10, pp. 2104-2110

[23] K. Evenson; D. Jennings; F. Petersen Tunable far-infrared spectroscopy, Applied Physics Letters, Volume 44 (1984) no. 6, pp. 576-578

[24] H. Odashima; L. Zink; K. Evenson Tunable far-infrared spectroscopy extended to 9.1 THz, Optics Letters, Volume 24 (1999) no. 6, pp. 406-407

[25] E. Brown; K. Mcintosh; K. Nichols; C. Dennis Photomixing up to 3.8-THz in low-temperature-grown GaAs, Applied Physics Letters, Volume 66 (1995) no. 3, pp. 285-287

[26] K. Mcintosh; E. Brown; K. Nichols; O. Mcmahon; W. Dinatale; T. Lyszczarz Terahertz photomixing with diode lasers in low-temperature-grown GaAs, Applied Physics Letters, Volume 67 (1995) no. 26, pp. 3844-3846

[27] A. Pine; R. Suenram; E. Brown; K. Mcintosh A terahertz photomixing spectrometer: Application to SO2 self broadening, Journal of Molecular Spectroscopy, Volume 175 (1996) no. 1, pp. 37-47

[28] H. Ito; F. Nakajima; T. Furuta; T. Ishibashi Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes, Semiconductor Science and Technology, Volume 20 (2005) no. 7, p. S191-S198

[29] T. Goyette; W. Guo; F. Delucia; J. Swartz; H. Everitt; B. Guenther; E. Brown Femtosecond demodulation source for high-resolution submillimeter spectroscopy, Applied Physics Letters, Volume 67 (1995) no. 25, pp. 3810-3812

[30] O. Pirali; N. Van-Oanh; P. Parneix; M. Vervloet; P. Brechignac Far-infrared spectroscopy of small polycyclic aromatic hydrocarbons, Physical Chemistry Chemical Physics, Volume 8 (2006) no. 32, pp. 3707-3714

[31] V. Podobedov; D. Plusquellic; G. Fraser THz laser study of self-pressure and temperature broadening and shifts of water vapor lines for pressures up to 1.4 KPa, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 87 (2004) no. 3–4, pp. 377-385

[32] P. Chen; J. Pearson; H. Pickett; S. Matsuura; G. Blake Measurements of (nh3)-n-14 in the nu(2) = 1 state by a solid-state, photomixing, THz spectrometer, and a simultaneous analysis of the microwave, terahertz, and infrared transitions between the ground and nu(2) inversion–rotation levels, Journal of Molecular Spectroscopy, Volume 236 (2006) no. 1, pp. 116-126

[33] Institut d'electronique de microélectronique et de nanotechnologie http://www.iemn.univ-lille1.fr/

[34] E. Peytavit; S. Arscott; D. Lippens; G. Mouret; S. Matton; P. Masselin; R. Bocquet; J. Lampin; L. Desplanque; F. Mollot Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector, Applied Physics Letters, Volume 81 (2002) no. 7, pp. 1174-1176

[35] G. Mouret; S. Matton; R. Bocquet; D. Bigourd; F. Hindle; A. Cuisset; J. Lampin; D. Lippens Anomalous dispersion measurement in terahertz frequency region by photomixing, Applied Physics Letters, Volume 88 (2006) no. 18, p. 181105

[36] K. Yamada; S. Klee Pure rotational spectrum of H2S in the far-infrared region measured by FTIR spectroscopy, Journal of Molecular Spectroscopy, Volume 166 (1994) no. 2, pp. 395-405

[37] Laboratoire de physique des lasers, atomes et molécules http://www-phlam.univ-lille1.fr/

[38] S. Matton; F. Rohart; R. Bocquet; G. Mouret; D. Bigourd; A. Cuisset; F. Hindle Terahertz spectroscopy applied to the measurement of strengths and self-broadening coefficients for high-J lines of OCS, Journal of Molecular Spectroscopy, Volume 239 ( October 2006 ), pp. 182-189

[39] S. Matton, Generation de rayonnement terahertz par photomelange et developpement d'une detection homodyne. Application a la caracterisation de polluants atmospheriques et de milieux dielectriques, PhD thesis, Université du Littoral Côte d'Opale, 2004

[40] R.C.W. Gordy Microwave Molecular Spectra, John Wiley and Sons, New York, 1984

[41] R. Weiss Stark effect and hyperfine structure of hydrogen fluoride, Physical Review, Volume 131 (1963) no. 2, pp. 659-665

[42] R.R. Baker Smoke chemistry (D.E.L. Davis; M.T. Nielsen, eds.), Tobacco: Production, Chemistry and Technology, Blackwell Science, London, 1999 (ISBN: 0632047917)

[43] D. Bigourd, Etude et detection de polluants atmospheriques dans le domaine THz, PhD thesis, Universite du Littoral Cote d'Opale, 2006

[44] L. Rothman; D. Jacquemart; A. Barbe; D. Benner; M. Birk; L. Brown; M. Carleer; C. Chackerian; K. Chance; L. Coudert; V. Dana; V. Devi; J. Flaud; R. Gamache; A. Goldman; J. Hartmann; K. Jucks; A. Maki; J. Mandin; S. Massie; J. Orphal; A. Perrin; C. Rinsland; M. Smith; J. Tennyson; R. Tolchenov; R. Toth; J. Vander Auwera; P. Varanasi; G. Wagner The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 96 (2005) no. 2, pp. 139-204 http://www.hitran.com

[45] Cologne database for molecular spectroscopy http://www.ph1.uni-koeln.de/vorhersagen/

[46] National institute of standards and technology http://physics.nist.gov/PhysRefData/MolSpec/index.html

[47] Jet propulsion laboratory http://spec.jpl.nasa.gov/

[48] Gestion et étude des informations spectroscopiques et atmospheriques http://ara.lmd.polytechnique.fr/htdocs-public/products/GEISA/HTML-GEISA/index.html

[49] A. Calafat; G. Polzin; J. Saylor; P. Richter; D. Ashley; C. Watson Determination of tar, nicotine, and carbon monoxide yields in the mainstream smoke of selected international cigarettes, Tobacco Control, Volume 13 (2004) no. 1, pp. 45-51

[50] N. Masalehdami, J. Potdevin, F. Cazier, D. Courcot, in: Int. Conf. on Coal Fire Research, 2005, pp. 101–103

Cited by Sources:

Comments - Policy