Comptes Rendus
Detection of explosives by Terahertz synthetic aperture imaging—focusing and spectral classification
[Détection d'explosives par l'imagerie térahertz à ouverture synthétique : mise au point et classification spectrale]
Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 248-261.

Nous nous intéressons ici à la détection d'armes et de substances explosives par l'imagerie térahertz à ouverture synthétique. Dans cette technique, le front d'onde THz réfléchi par l'objet observé présente une déformation importante qui doit être prise en compte dans la reconstruction de l'image. Il en découle que le détecteur matriciel doit être situé à une distance spécifique pour corriger l'effet de cette déformation. En plus de la correction du front d'onde, la détection d'explosifs demande une analyse spectrale de l'image. Nous montrons, en prenant comme exemple l'explosif C4, que la méthode de cartographie auto-organisée de Kohonen constitue un outil efficace pour différencier la signature spectrale des explosifs de celle de l'environnement.

In the adaptation of Terahertz (THz) synthetic aperture imaging to stand-off screening of concealed weapons and explosives, the incoming THz wavefronts exhibit significant curvature that must be considered in the image reconstruction. Consequently, the imaging array must be focused at a specific distance to correct for the wavefront curvature. In addition to the focusing correction, detection of explosives requires spectral analysis of the reconstructed THz image. Kohonen self-organizing maps are shown to be promising tools for differentiating the spectral signature of C4 explosive from the reflection spectra of metal and semi-transparent barrier materials.

Publié le :
DOI : 10.1016/j.crhy.2007.09.013
Keywords: Terahertz, Kohonen maps, Synthetic aperture
Mot clés : Térahertz, Cartographie de Kohonen, Ouverture synthétique
Alexander Sinyukov 1 ; Ivan Zorych 2 ; Zoi-Heleni Michalopoulou 2 ; Dale Gary 1 ; Robert Barat 3 ; John F. Federici 1

1 Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA
2 Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA
3 Otto York Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
@article{CRPHYS_2008__9_2_248_0,
     author = {Alexander Sinyukov and Ivan Zorych and Zoi-Heleni Michalopoulou and Dale Gary and Robert Barat and John F. Federici},
     title = {Detection of explosives by {Terahertz} synthetic aperture imaging{\textemdash}focusing and spectral classification},
     journal = {Comptes Rendus. Physique},
     pages = {248--261},
     publisher = {Elsevier},
     volume = {9},
     number = {2},
     year = {2008},
     doi = {10.1016/j.crhy.2007.09.013},
     language = {en},
}
TY  - JOUR
AU  - Alexander Sinyukov
AU  - Ivan Zorych
AU  - Zoi-Heleni Michalopoulou
AU  - Dale Gary
AU  - Robert Barat
AU  - John F. Federici
TI  - Detection of explosives by Terahertz synthetic aperture imaging—focusing and spectral classification
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 248
EP  - 261
VL  - 9
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.09.013
LA  - en
ID  - CRPHYS_2008__9_2_248_0
ER  - 
%0 Journal Article
%A Alexander Sinyukov
%A Ivan Zorych
%A Zoi-Heleni Michalopoulou
%A Dale Gary
%A Robert Barat
%A John F. Federici
%T Detection of explosives by Terahertz synthetic aperture imaging—focusing and spectral classification
%J Comptes Rendus. Physique
%D 2008
%P 248-261
%V 9
%N 2
%I Elsevier
%R 10.1016/j.crhy.2007.09.013
%G en
%F CRPHYS_2008__9_2_248_0
Alexander Sinyukov; Ivan Zorych; Zoi-Heleni Michalopoulou; Dale Gary; Robert Barat; John F. Federici. Detection of explosives by Terahertz synthetic aperture imaging—focusing and spectral classification. Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 248-261. doi : 10.1016/j.crhy.2007.09.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.09.013/

[1] J. Federici; B. Schulkin; F. Huang; D. Gary; R. Barat; F. Oliveira; D. Zimdars THz imaging and sensing for security applications—explosives, weapons, and drugs, Semicond. Sci. Technol., Volume 20 (1995), p. S266

[2] J.F. Federici; D. Gary; R. Barat; Z.-H. Michalopoulou Counter-Terrorism Detection Techniques of Explosives, Elsevier, 2007 (Ch. Detection of explosives by Terahertz imaging)

[3] F. Huang; B. Schulkin; H. Altan; J. Federici; D. Gary; R. Barat; D. Zimdars; M. Chen; D. Tanner Terahertz study of 1,3,5-trinitro-s-triazine (RDX) by time domain spectroscopy and FTIR, Appl. Phys. Lett., Volume 85 (2004), p. 5535

[4] D. Zimdars; J.S. White Terahertz reflection imaging for package and personnel inspection, Proc. SPIE, Volume 5411 (2004), p. 78

[5] T. Yuan; H. Liu; J. Xu; F. Al-Douseri; Y. Hu; X. Zhang Terahertz time-domain spectroscopy of atmosphere with different humidity, Proc. SPIE, Volume 5070 (2003), p. 28

[6] E.R. Brown Terahertz Sensing Technology, vol. 2: Emerging Scientific Applications & Novel Device Concepts, World Scientific, 2003 (Ch. Fundamentals of terrestrial millimeter-wave and THz remote sensing)

[7] D. Zimdars; J. White; G. Stuk; A. Chernovsky; G. Fichter; S.L. Williamson Time domain terahertz detection of concealed threats in luggage and personnel, Proc. SPIE, Volume 6212 (2006), p. 62160O

[8] Z. Jiang; X.-C. Zhang Single-shot spatiotemporal terahertz field imaging, Opt. Lett., Volume 23 (1998), p. 1114

[9] A. Thompson; J. Moran; G. Swensen Interferometry and Synthesis in Radio Astronomy, Wiley Interscience, 2001

[10] R.A. Cheville; M.T. Reiten; R. McGowan; D.R. Grischkowsky Sensing with Terahertz Radiation, Springer, 2003 (Ch. Applications of optically generated Terahertz pulses to time domain ranging and scattering)

[11] A. Ruffin; J. Decker; L. Sanchez-Palencia; L.L. Hors; J. Whitaker; T. Norris; J. Rudd Time reversal and object reconstruction with single-cycle pulses, Opt. Lett., Volume 26 (2001), p. 681

[12] T.D. Dorney; J.L. Johnson; J.V. Rudd; R.G. Baraniuk; W.W. Symes; D.M. Mittleman Terahertz reflection imaging using Kirchhoff migration, Opt. Lett., Volume 26 (2001), p. 1513

[13] J. O'Hara; D. Grischkowsky Quasi-optic synthetic phased-array terahertz imaging, J. Opt. Soc. Am. B, Volume 21 (2004), p. 1178

[14] A. Bandyopadhyay; A. Stepanov; A. Sengupta; D.E. Gary; M.D. Federici; B. Schulkin; R.B. Barat; E. Michalopoulou; D. Zimdars; J.F. Federici Terahertz interferometric and synthetic aperture imaging, J. Opt. Soc. Amer. A, Volume 23 (2006), p. 1168

[15] R.P. Lippmann An introduction to computing with neural nets, IEEE Acoustics Speech and Signal Processing Magazine (1987), pp. 4-22

[16] F. Oliveira; R. Barat; B. Schulkin; F. Huang; J. Federici; D. Gary; D. Zimdars Analysis of THz spectral images of explosives and bio-agents using trained neural networks, Proc. SPIE, Volume 5411 (2004), p. 45

[17] D. Broomhead; D. Lowe Multivariate functional interpolation and adaptive networks, Complex Systems, Volume 2 (1988), pp. 321-355

[18] A. Bandyopadhyay; A. Sengupta; R.B. Barat; D.E. Gary; Z. Michalopoulou; J.F. Federici Interferometric THz imaging for detection of lethal agents using artificial neural network analysis, Int. J. Infrared Millimeter Waves, Volume 27 (2006), pp. 1145-1158

[19] T. Kohonen The self organizing map, Proceedings of the IEEE, Volume 78 (1990), pp. 1464-1480

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides

Jason A. Deibel; Kanglin Wang; Matthew Escarra; ...

C. R. Phys (2008)


Surface plasmon THz waves on gratings

Maxim Nazarov; Frédéric Garet; Damien Armand; ...

C. R. Phys (2008)