In the adaptation of Terahertz (THz) synthetic aperture imaging to stand-off screening of concealed weapons and explosives, the incoming THz wavefronts exhibit significant curvature that must be considered in the image reconstruction. Consequently, the imaging array must be focused at a specific distance to correct for the wavefront curvature. In addition to the focusing correction, detection of explosives requires spectral analysis of the reconstructed THz image. Kohonen self-organizing maps are shown to be promising tools for differentiating the spectral signature of C4 explosive from the reflection spectra of metal and semi-transparent barrier materials.
Nous nous intéressons ici à la détection d'armes et de substances explosives par l'imagerie térahertz à ouverture synthétique. Dans cette technique, le front d'onde THz réfléchi par l'objet observé présente une déformation importante qui doit être prise en compte dans la reconstruction de l'image. Il en découle que le détecteur matriciel doit être situé à une distance spécifique pour corriger l'effet de cette déformation. En plus de la correction du front d'onde, la détection d'explosifs demande une analyse spectrale de l'image. Nous montrons, en prenant comme exemple l'explosif C4, que la méthode de cartographie auto-organisée de Kohonen constitue un outil efficace pour différencier la signature spectrale des explosifs de celle de l'environnement.
Mot clés : Térahertz, Cartographie de Kohonen, Ouverture synthétique
Alexander Sinyukov 1; Ivan Zorych 2; Zoi-Heleni Michalopoulou 2; Dale Gary 1; Robert Barat 3; John F. Federici 1
@article{CRPHYS_2008__9_2_248_0, author = {Alexander Sinyukov and Ivan Zorych and Zoi-Heleni Michalopoulou and Dale Gary and Robert Barat and John F. Federici}, title = {Detection of explosives by {Terahertz} synthetic aperture imaging{\textemdash}focusing and spectral classification}, journal = {Comptes Rendus. Physique}, pages = {248--261}, publisher = {Elsevier}, volume = {9}, number = {2}, year = {2008}, doi = {10.1016/j.crhy.2007.09.013}, language = {en}, }
TY - JOUR AU - Alexander Sinyukov AU - Ivan Zorych AU - Zoi-Heleni Michalopoulou AU - Dale Gary AU - Robert Barat AU - John F. Federici TI - Detection of explosives by Terahertz synthetic aperture imaging—focusing and spectral classification JO - Comptes Rendus. Physique PY - 2008 SP - 248 EP - 261 VL - 9 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2007.09.013 LA - en ID - CRPHYS_2008__9_2_248_0 ER -
%0 Journal Article %A Alexander Sinyukov %A Ivan Zorych %A Zoi-Heleni Michalopoulou %A Dale Gary %A Robert Barat %A John F. Federici %T Detection of explosives by Terahertz synthetic aperture imaging—focusing and spectral classification %J Comptes Rendus. Physique %D 2008 %P 248-261 %V 9 %N 2 %I Elsevier %R 10.1016/j.crhy.2007.09.013 %G en %F CRPHYS_2008__9_2_248_0
Alexander Sinyukov; Ivan Zorych; Zoi-Heleni Michalopoulou; Dale Gary; Robert Barat; John F. Federici. Detection of explosives by Terahertz synthetic aperture imaging—focusing and spectral classification. Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 248-261. doi : 10.1016/j.crhy.2007.09.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.09.013/
[1] THz imaging and sensing for security applications—explosives, weapons, and drugs, Semicond. Sci. Technol., Volume 20 (1995), p. S266
[2] Counter-Terrorism Detection Techniques of Explosives, Elsevier, 2007 (Ch. Detection of explosives by Terahertz imaging)
[3] Terahertz study of 1,3,5-trinitro-s-triazine (RDX) by time domain spectroscopy and FTIR, Appl. Phys. Lett., Volume 85 (2004), p. 5535
[4] Terahertz reflection imaging for package and personnel inspection, Proc. SPIE, Volume 5411 (2004), p. 78
[5] Terahertz time-domain spectroscopy of atmosphere with different humidity, Proc. SPIE, Volume 5070 (2003), p. 28
[6] Terahertz Sensing Technology, vol. 2: Emerging Scientific Applications & Novel Device Concepts, World Scientific, 2003 (Ch. Fundamentals of terrestrial millimeter-wave and THz remote sensing)
[7] Time domain terahertz detection of concealed threats in luggage and personnel, Proc. SPIE, Volume 6212 (2006), p. 62160O
[8] Single-shot spatiotemporal terahertz field imaging, Opt. Lett., Volume 23 (1998), p. 1114
[9] Interferometry and Synthesis in Radio Astronomy, Wiley Interscience, 2001
[10] Sensing with Terahertz Radiation, Springer, 2003 (Ch. Applications of optically generated Terahertz pulses to time domain ranging and scattering)
[11] Time reversal and object reconstruction with single-cycle pulses, Opt. Lett., Volume 26 (2001), p. 681
[12] Terahertz reflection imaging using Kirchhoff migration, Opt. Lett., Volume 26 (2001), p. 1513
[13] Quasi-optic synthetic phased-array terahertz imaging, J. Opt. Soc. Am. B, Volume 21 (2004), p. 1178
[14] Terahertz interferometric and synthetic aperture imaging, J. Opt. Soc. Amer. A, Volume 23 (2006), p. 1168
[15] An introduction to computing with neural nets, IEEE Acoustics Speech and Signal Processing Magazine (1987), pp. 4-22
[16] Analysis of THz spectral images of explosives and bio-agents using trained neural networks, Proc. SPIE, Volume 5411 (2004), p. 45
[17] Multivariate functional interpolation and adaptive networks, Complex Systems, Volume 2 (1988), pp. 321-355
[18] Interferometric THz imaging for detection of lethal agents using artificial neural network analysis, Int. J. Infrared Millimeter Waves, Volume 27 (2006), pp. 1145-1158
[19] The self organizing map, Proceedings of the IEEE, Volume 78 (1990), pp. 1464-1480
Cited by Sources:
Comments - Policy