[Plasmons-polaritons de surface le long d'un fil métallique dans le domaine THz : excitation et diffraction]
Le développement de la spectroscopie THz et des applications en imagerie THz basées sur des techniques temporelles requiert de pouvoir utiliser des guides d'ondes capables de véhiculer les impulsions électromagnétiques THz. Les plasmons-polaritons de surface peuvent être excités le long de fils métalliques cylindriques et guidés avec peu de pertes et une faible dispersion. Cependant, ce type d'onde propagative de surface, appelée onde de Sommerfeld, possède une polarisation radiale contrairement à celle des sources conventionnelles de rayonnement THz qui est généralement linéaire. Pour résoudre ce problème, nous avons conçu une antenne de rayonnement THz qui génère une polarisation de symétrie radiale, permettant d'exciter efficacement les ondes de Sommerfeld. Nous étudions aussi la diffraction en fonction de la fréquence de l'onde de Sommerfeld dans l'espace libre en extrémité du fil métallique.
The development of effective techniques for guiding pulsed terahertz radiation is essential for the continued development of terahertz spectroscopy and imaging applications based on the technique of time-domain spectroscopy. Terahertz surface plasmon polaritons (SPPs) can be excited and guided on cylindrical metal wires with low loss and dispersion. This propagating surface wave, known as a Sommerfeld wave, possesses radial polarization, which is not well matched with conventional sources of pulsed terahertz radiation. A photoconductive terahertz antenna with radial symmetry produces radiation that more efficiently couples to the wire waveguide. At the end of the wire, terahertz SPPs emit radiation into free-space that exhibits frequency-dependent diffraction.
Mot clés : Térahertz, Guide d'ondes, Plasmons-polaritons de surface, Antenne de rayonnement THz, Simulation par méthode des éléments finis
Jason A. Deibel 1 ; Kanglin Wang 1 ; Matthew Escarra 1 ; Nicholas Berndsen 1 ; Daniel M. Mittleman 1
@article{CRPHYS_2008__9_2_215_0, author = {Jason A. Deibel and Kanglin Wang and Matthew Escarra and Nicholas Berndsen and Daniel M. Mittleman}, title = {The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides}, journal = {Comptes Rendus. Physique}, pages = {215--231}, publisher = {Elsevier}, volume = {9}, number = {2}, year = {2008}, doi = {10.1016/j.crhy.2007.07.011}, language = {en}, }
TY - JOUR AU - Jason A. Deibel AU - Kanglin Wang AU - Matthew Escarra AU - Nicholas Berndsen AU - Daniel M. Mittleman TI - The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides JO - Comptes Rendus. Physique PY - 2008 SP - 215 EP - 231 VL - 9 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2007.07.011 LA - en ID - CRPHYS_2008__9_2_215_0 ER -
%0 Journal Article %A Jason A. Deibel %A Kanglin Wang %A Matthew Escarra %A Nicholas Berndsen %A Daniel M. Mittleman %T The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides %J Comptes Rendus. Physique %D 2008 %P 215-231 %V 9 %N 2 %I Elsevier %R 10.1016/j.crhy.2007.07.011 %G en %F CRPHYS_2008__9_2_215_0
Jason A. Deibel; Kanglin Wang; Matthew Escarra; Nicholas Berndsen; Daniel M. Mittleman. The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides. Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 215-231. doi : 10.1016/j.crhy.2007.07.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.07.011/
[1] Sensing with Terahertz Radiation (D.M. Mittleman, ed.), Springer-Verlag, Heidelberg, 2002
[2] Subpicosecond photoconducting dipole antennas, IEEE Journal of Quantum Electronics, Volume 24 (1988), pp. 255-260
[3] Characterization of an optoelectronic terahertz beam systems, IEEE Transactions on Microwave Theory and Techniques, Volume 38 (1990), pp. 1684-1690
[4] Terahertz optical rectification from a nonlinear organic crystal, Applied Physics Letters, Volume 61 (1992) no. 26, pp. 3080-3082
[5] Coherent time-domain far-infrared spectroscopy, Journal of the Optical Society of America B: Optical Physics, Volume 2 (1985) no. 4, pp. 606-612
[6] Free-space electro-optic sampling of terahertz beams, Applied Physics Letters, Volume 67 (1995) no. 24, pp. 3523-3525
[7] Non-contact semiconductor wafer characterization with the terahertz hall effect, Applied Physics Letters, Volume 71 (1997), p. 16
[8] Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, Journal of the Optical Society of America B, Volume 7 (1990) no. 10, p. 2006
[9] Three-dimensional terahertz pulse imaging of dental tissue, Journal of Biomedical Optics, Volume 8 (2003), pp. 303-307
[10] Terahertz pulsed imaging of skin cancer in the time and frequency domain, Journal of Biological Physics, Volume 29 (2003), pp. 257-261
[11] Chemical recognition of gases and gas mixtures using terahertz radiation, Optics Letters, Volume 21 (1996), p. 2011
[12] Wideband terahertz spectroscopy of explosives, Chemical Physics Letters, Volume 434 (2007) no. 4–6, pp. 227-230
[13] Detection and identification of explosives using terahertz pulsed spectroscopic imaging, Applied Physics Letters, Volume 86 (1986) no. 24, p. 241116
[14] Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Optics Express, Volume 11 (2003) no. 20, p. 2549
[15] Terahertz study of 1,3,5-trinitro-s-triazine by time-domain and Fourier transform infrared spectroscopy, Applied Physics Letters, Volume 85 (2004) no. 23, pp. 5535-5537
[16] Large area terahertz imaging and non-destructive evaluation applications, Insight-Non-Destructive Testing and Condition Monitoring, Volume 48 (2006) no. 9, pp. 537-539
[17] Pulsed terahertz tomography, Journal of Physics D, Volume 37 (2004), p. R1-R36
[18] Terahertz imaging with nanometer resolution, Applied Physics Letters, Volume 83 (2003) no. 15, pp. 3009-3011
[19] Apertureless terahertz near-field microscopy, Semiconductor Science and Technology, Volume 20 (2005) no. 7, p. S286-S292
[20] Spot-size reduction in terahertz apertureless near-field imaging, Optics Letters, Volume 29 (2004) no. 19, pp. 2306-2308
[21] Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip, Applied Physics Letters, Volume 81 (2002) no. 9, p. 1558
[22] Towards terahertz near-field microscopy, Philosophical Transactions of the Royal Society of London A, Volume 362 (2004), pp. 315-321
[23] Antenna effects in THz apertureless near-field optical microscopy, Applied Physics Letters, Volume 85 (2004), p. 2715
[24] Opto-electronic pulsed THz systems, Semiconductor Science and Technology, Volume 20 (2005), p. S121-S127
[25] J.V. Rudd, D. Zimdars, M. Warmuth, Compact fiber-pigtailed terahertz imaging system, presented at the Commercial and Biomedical Applications of Ultrafast Lasers II, San Jose, CA, USA, 2000
[26] Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers, Applied Physics Letters, Volume 76 (2000) no. 15, pp. 1987-1989
[27] Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation, Optics Express, Volume 12 (2004) no. 21, p. 5263
[28] Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides, Optics Letters, Volume 24 (1999) no. 20, pp. 1431-1433
[29] Whispering-gallery-mode cavity for terahertz pulses, Journal of the Optical Society of America B: Optical Physics, Volume 20 (2003) no. 9, pp. 1894-1904
[30] Teflon photonic crystal fiber as terahertz waveguide, Japanese Journal of Applied Physics, Volume 43 (2004), p. L317-L319
[31] Terahertz pulse propagation in a plastic photonic crystal fiber, Applied Physics Letters, Volume 80 (2002), pp. 2634-2636
[32] Low-loss single-mode terahertz waveguiding using Cytop, Applied Physics Letters, Volume 89 (2006), p. 211119
[33] Undistorted guided-wave propagation of subpicosecond terahertz pulses, Optics Letters, Volume 26 (2001) no. 11, p. 846
[34] THz interconnect with low-loss and low-group velocity dispersion, IEEE Microwave and Wireless Components Letters, Volume 11 (2001) no. 11, p. 444
[35] Waveguide terahertz time-domain spectroscopy of nanometer water layers, Optics Letters, Volume 29 (2004) no. 14, pp. 1617-1619
[36] Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide, Applied Physics Letters, Volume 89 (2006), p. 251110
[37] Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides, Optics Letters, Volume 31 (2006) no. 17, pp. 2643-2645
[38] Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy, Semiconductor Science and Technology, Volume 20 (2005), p. 300
[39] Low-index discontinuity terahertz waveguides, Optics Express, Volume 14 (2006) no. 21, pp. 9944-9954
[40] Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission, Applied Physics Letters, Volume 90 (2007), p. 061111
[41] Metal wires for terahertz waveguiding, Nature, Volume 432 (2004), p. 376
[42] THz Sommerfeld wave propagation on a single metal wire, Applied Physics Letters, Volume 86 (2005), p. 161904
[43] Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires, Optics Express, Volume 13 (2005) no. 26, p. 10815
[44] Guided propagation of terahertz pulses on metal wires, Journal of the Optical Society of America B, Volume 22 (2005), p. 2001
[45] Waveguide handbook, Massachusetts Institute of Technology Radiation Laboratory Series, McGraw–Hill, New York, 1951
[46] Electromagnetic Theory, International Series in Physics, McGraw–Hill, New York, 1941
[47] Surface waves and their application to transmission lines, Journal of Applied Physics, Volume 21 (1950), p. 1119
[48] Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range, Physical Review Letters, Volume 96 (2006), p. 157401
[49] Azimuthally polarized surface plasmons as effective terahertz waveguides, Optics Express, Volume 13 (2005) no. 2, p. 511
[50] Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires, Applied Physics Letters, Volume 87 (2005), p. 071106
[51] Metal-wire terahertz time-domain spectroscopy, Applied Physics Letters, Volume 87 (2005), p. 261107
[52] The Finite Element Method in Electromagnetics, John Wiley & Sons, Inc., New York, 2002
[53] Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Miscellaneous Titles in Applied Mathematics Series, vol. 43, SIAM, Philadelphia, 1994
[54] COMSOL Multiphysics, COMSOL AB, Stockholm, Sweden, 2007
[55] Long-range surface modes supported by thin films, Physical Review B, Volume 44 (1991) (5855–5872)
[56] Cross-polarized angular emission patterns from lens-coupled terahertz antennas, Journal of the Optical Society of America B, Volume 18 (2001), p. 1524
[57] Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification, Optics Letters, Volume 32 (2007) no. 4, pp. 433-435
[58] Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves, Optics Express, Volume 13 (2005) no. 18, p. 7028
[59] Photoconductive terahertz antenna with radial symmetry, Electronics Letters, Volume 41 (2005), p. 9
[60] Enhanced coupling of terahertz radiation to cylindrical wire waveguides, Optics Express, Volume 14 (2006), pp. 279-290
[61] Classical Electrodynamics, John Wiley & Sons, Inc., New York, 1999
[62] Radiation patterns from lens coupled terahertz antennas, Optics Letters, Volume 20 (1995) no. 8, p. 807
[63] Terahertz beams, Applied Physics Letters, Volume 54 (1989), pp. 490-492
[64] Emission and detection of terahertz pulses from a metal-tip antenna, Journal of the Optical Society of America B, Volume 22 (2005), pp. 2357-2365
[65] Nanofocusing of optical energy in tapered plasmonic waveguides, Physical Review Letters, Volume 93 (2004) no. 13, p. 137404
[66] Plasmonic coupling between a metallic nanosphere and a thin metallic wire, Applied Physics Letters, Volume 89 (2006), p. 103101
[67] Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical wires, Optics Express, Volume 14 (2006), pp. 8772-8778
[68] Terahertz surface plasmon–polariton propagation and focusing on periodically corrugated metal wires, Physical Review Letters, Volume 97 (2006), p. 176805
Cité par Sources :
Commentaires - Politique