[Excitation et propriétés de propagation des plasmons de surface à la surface de réseaux de diffraction métalliques dans le domaine térahertz]
Dans le domaine spectral des ondes électromagnétiques térahertz, les plasmons de surface se propagent sur de très longues distances. Cette propriété permet d'imaginer des systèmes térahertz quasi-optiques bi-dimensionnels à la surface d'une plaque métallique. L'excitation de plasmons de surface à l'aide d'ondes incidentes planes peut être réalisée de façon efficace par un réseau de diffraction gravé sur le métal. Dans cet article, nous présentons un ensemble de travaux récents que nous avons effectués pour caractériser ce type d'excitation. L'analyse des données expérimentales obtenues par spectroscopie térahertz dans le domaine temporel nous a permis de mettre en exergue les principaux paramètres opto-géométriques qui entrent en jeu dans le couplage et dans la propagation des plasmons à la surface des réseaux et d'échantillons lisses.
Because of their long propagation length at a metal surface in the far infrared, surface plasmons make potentially feasible the design and realization of 2D integrated terahertz systems over a metallic substrate. The coupling of a terahertz beam to the surface plasmon wave is very efficiently achieved by diffraction gratings engraved at the metal surface. In this article, we present a review of some recent works we performed in view of characterizing this coupling phenomenon. The analysis of the experimental data supplied by terahertz time-domain spectroscopy allows us to point out the main parameters that govern this diffraction process and the propagation of a surface plasmon over a flat or corrugated metal surface.
Mot clés : Térahertz, Plasmons de surface
Maxim Nazarov 1 ; Frédéric Garet 2 ; Damien Armand 2 ; Alexander Shkurinov 1 ; Jean-Louis Coutaz 2
@article{CRPHYS_2008__9_2_232_0, author = {Maxim Nazarov and Fr\'ed\'eric Garet and Damien Armand and Alexander Shkurinov and Jean-Louis Coutaz}, title = {Surface plasmon {THz} waves on gratings}, journal = {Comptes Rendus. Physique}, pages = {232--247}, publisher = {Elsevier}, volume = {9}, number = {2}, year = {2008}, doi = {10.1016/j.crhy.2008.01.004}, language = {en}, }
TY - JOUR AU - Maxim Nazarov AU - Frédéric Garet AU - Damien Armand AU - Alexander Shkurinov AU - Jean-Louis Coutaz TI - Surface plasmon THz waves on gratings JO - Comptes Rendus. Physique PY - 2008 SP - 232 EP - 247 VL - 9 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2008.01.004 LA - en ID - CRPHYS_2008__9_2_232_0 ER -
Maxim Nazarov; Frédéric Garet; Damien Armand; Alexander Shkurinov; Jean-Louis Coutaz. Surface plasmon THz waves on gratings. Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 232-247. doi : 10.1016/j.crhy.2008.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.01.004/
[1] Spectroscopy in the THz spectral region (D.M. Mittleman, ed.), Sensing with Terahertz Radiation, Springer-Verlag, Berlin, 2003
[2] et al. Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods, Appl. Phys. B, Volume 86 (2006), pp. 579-586
[3] et al. Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy, Appl. Spectrosc., Volume 61 (2007), p. 638
[4] et al. THz imaging and sensing for security applications – explosives, weapons, and drugs, Semicond. Sci. Technol., Volume 5790 (2005), p. 11-S280
[5] et al. Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz, Appl. Phys. B, Volume 79 (2004), pp. 725-729
[6] Electromagnetic Mechanism of Surface-enhanced Spectroscopy (G.C. Schatz; R.P. Van Duyne, eds.), Wiley, New York, 2002
[7] Surface Plasmons on Smooth and Rough Surfaces and on Gratings (R.F. Wallis; G.I. Stegeman, eds.), Springer Tracts in Modern Physics, Electromagnetic Surface Excitations, Springer Series on Wave Phenomena, Springer, Berlin, 1986
[8] (D.B. Ostrowsky; R. Reinisch, eds.), Guided Wave Nonlinear Optics, Kluwer Academic Publishers, Dordrecht, 1992
[9] Terahertz Sources and Systems Electronics (R. Miles; P. Harrison; D. Lippens, eds.), NATO Science Series II, vol. 27, Kluwer Academic, Dordrecht, 2001
[10] Sensing with Terahertz Radiation (D. Mittleman, ed.), Springer Series in Optical Sciences, vol. 85, Springer, Berlin, 2003
[11] et al. Fabry–Pérot effects in THz time-domain spectroscopy of plasmonic band-gap structures, Appl. Phys. Lett., Volume 88 (2006), p. 071114
[12] D. Armand et al., Study of the transmission of sub-wavelength metallic grids in the THz frequency range, IEEE J. Selected Topics Quant. Electron. (March 2008), in press
[13] et al. THz surface plasmon jump between two metal edges, Opt. Commun., Volume 277 (2007), pp. 33-39
[14] et al. Prism coupling to terahertz surface plasmon polaritons, Opt. Express, Volume 13 (2005), p. 6117
[15] Generation and propagation of surface plasmons in periodic metallic structures, Appl. Phys. Lett., Volume 87 (2005), p. 204105
[16] et al. Nucl. Instrum. Methods Phys. Res. A, 543 (2005), p. 96
[17] Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum, Appl. Opt., Volume 34 (1995), pp. 4755-4767
[18] et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W, Appl. Opt., Volume 24 (1985), pp. 4493-4499
[19] Theory of dielectric waveguides (T. Tamir, ed.), Integrated Optics, Springer-Verlag, New York, 1995
[20] et al. Gratings and prisms couplers: radiation pattern and m-line, Opt. Commun., Volume 120 (1995), pp. 121-128
[21] The integral method (R. Petitt, ed.), Electromagnetic Theory of Gratings, Springer-Verlag, Berlin, 1980, pp. 63-100
[22] et al. THz surface plasmon jump between two metal edges, Opt. Commun., Volume 277 (2007), pp. 33-39
[23] et al. Propagation of THz plasmon pulse on corrugated and flat metal surface, Surf. Sci., Volume 600 (2006), pp. 4771-4776
[24] et al. Grating-assisted coupling of terahertz temporal waves into a dielectric waveguide studied by terahertz time-domain spectroscopy, Appl. Opt., Volume 41 (2002), pp. 6507-6513
[25] et al. Photo-variation of grating-assisted coupling of THz waves into a silicon waveguide, J. Appl. Phys., Volume 94 (2003), pp. 7888-7891
[26] THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet, Appl. Phys. Lett., Volume 88 (2006), p. 061113
[27] et al. Excitation and propagation of surface electromagnetic waves studied by terahertz spectrochronography, Laser Phys. Lett., Volume 2 (2005), pp. 471-475
[28] Reduced conductivity in the terahertz skin-depth layer of metals, Appl. Phys. Lett., Volume 90 (2007), p. 122115
Cité par Sources :
Commentaires - Politique