Comptes Rendus
Surface plasmon THz waves on gratings
Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 232-247.

Because of their long propagation length at a metal surface in the far infrared, surface plasmons make potentially feasible the design and realization of 2D integrated terahertz systems over a metallic substrate. The coupling of a terahertz beam to the surface plasmon wave is very efficiently achieved by diffraction gratings engraved at the metal surface. In this article, we present a review of some recent works we performed in view of characterizing this coupling phenomenon. The analysis of the experimental data supplied by terahertz time-domain spectroscopy allows us to point out the main parameters that govern this diffraction process and the propagation of a surface plasmon over a flat or corrugated metal surface.

Dans le domaine spectral des ondes électromagnétiques térahertz, les plasmons de surface se propagent sur de très longues distances. Cette propriété permet d'imaginer des systèmes térahertz quasi-optiques bi-dimensionnels à la surface d'une plaque métallique. L'excitation de plasmons de surface à l'aide d'ondes incidentes planes peut être réalisée de façon efficace par un réseau de diffraction gravé sur le métal. Dans cet article, nous présentons un ensemble de travaux récents que nous avons effectués pour caractériser ce type d'excitation. L'analyse des données expérimentales obtenues par spectroscopie térahertz dans le domaine temporel nous a permis de mettre en exergue les principaux paramètres opto-géométriques qui entrent en jeu dans le couplage et dans la propagation des plasmons à la surface des réseaux et d'échantillons lisses.

Published online:
DOI: 10.1016/j.crhy.2008.01.004
Keywords: Terahertz, Surface plasmons
Mot clés : Térahertz, Plasmons de surface

Maxim Nazarov 1; Frédéric Garet 2; Damien Armand 2; Alexander Shkurinov 1; Jean-Louis Coutaz 2

1 Department of Physics and International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
2 IMEP-LAHC, Université de Savoie, 73376 Le Bourget du Lac cedex, France
@article{CRPHYS_2008__9_2_232_0,
     author = {Maxim Nazarov and Fr\'ed\'eric Garet and Damien Armand and Alexander Shkurinov and Jean-Louis Coutaz},
     title = {Surface plasmon {THz} waves on gratings},
     journal = {Comptes Rendus. Physique},
     pages = {232--247},
     publisher = {Elsevier},
     volume = {9},
     number = {2},
     year = {2008},
     doi = {10.1016/j.crhy.2008.01.004},
     language = {en},
}
TY  - JOUR
AU  - Maxim Nazarov
AU  - Frédéric Garet
AU  - Damien Armand
AU  - Alexander Shkurinov
AU  - Jean-Louis Coutaz
TI  - Surface plasmon THz waves on gratings
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 232
EP  - 247
VL  - 9
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.01.004
LA  - en
ID  - CRPHYS_2008__9_2_232_0
ER  - 
%0 Journal Article
%A Maxim Nazarov
%A Frédéric Garet
%A Damien Armand
%A Alexander Shkurinov
%A Jean-Louis Coutaz
%T Surface plasmon THz waves on gratings
%J Comptes Rendus. Physique
%D 2008
%P 232-247
%V 9
%N 2
%I Elsevier
%R 10.1016/j.crhy.2008.01.004
%G en
%F CRPHYS_2008__9_2_232_0
Maxim Nazarov; Frédéric Garet; Damien Armand; Alexander Shkurinov; Jean-Louis Coutaz. Surface plasmon THz waves on gratings. Comptes Rendus. Physique, Volume 9 (2008) no. 2, pp. 232-247. doi : 10.1016/j.crhy.2008.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.01.004/

[1] F.C. De Lucia Spectroscopy in the THz spectral region (D.M. Mittleman, ed.), Sensing with Terahertz Radiation, Springer-Verlag, Berlin, 2003

[2] D. Bigourd et al. Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods, Appl. Phys. B, Volume 86 (2006), pp. 579-586

[3] W.H. Fan et al. Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy, Appl. Spectrosc., Volume 61 (2007), p. 638

[4] J.F. Federici; et al.; J.F. Federici et al. THz imaging and sensing for security applications – explosives, weapons, and drugs, Semicond. Sci. Technol., Volume 5790 (2005), p. 11-S280

[5] G. Mouret et al. Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz, Appl. Phys. B, Volume 79 (2004), pp. 725-729

[6] Electromagnetic Mechanism of Surface-enhanced Spectroscopy (G.C. Schatz; R.P. Van Duyne, eds.), Wiley, New York, 2002

[7] H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings (R.F. Wallis; G.I. Stegeman, eds.), Springer Tracts in Modern Physics, Electromagnetic Surface Excitations, Springer Series on Wave Phenomena, Springer, Berlin, 1986

[8] (D.B. Ostrowsky; R. Reinisch, eds.), Guided Wave Nonlinear Optics, Kluwer Academic Publishers, Dordrecht, 1992

[9] Terahertz Sources and Systems Electronics (R. Miles; P. Harrison; D. Lippens, eds.), NATO Science Series II, vol. 27, Kluwer Academic, Dordrecht, 2001

[10] Sensing with Terahertz Radiation (D. Mittleman, ed.), Springer Series in Optical Sciences, vol. 85, Springer, Berlin, 2003

[11] J.W. Lee et al. Fabry–Pérot effects in THz time-domain spectroscopy of plasmonic band-gap structures, Appl. Phys. Lett., Volume 88 (2006), p. 071114

[12] D. Armand et al., Study of the transmission of sub-wavelength metallic grids in the THz frequency range, IEEE J. Selected Topics Quant. Electron. (March 2008), in press

[13] M. Nazarov et al. THz surface plasmon jump between two metal edges, Opt. Commun., Volume 277 (2007), pp. 33-39

[14] J.F. O'Hara et al. Prism coupling to terahertz surface plasmon polaritons, Opt. Express, Volume 13 (2005), p. 6117

[15] B. Pradarutti; et al.; G. Torosyan; C. Rau; B. Pradarutti; R. Beigang Generation and propagation of surface plasmons in periodic metallic structures, Appl. Phys. Lett., Volume 87 (2005), p. 204105

[16] G. Bogomolov et al. Nucl. Instrum. Methods Phys. Res. A, 543 (2005), p. 96

[17] A.D. Rakic Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum, Appl. Opt., Volume 34 (1995), pp. 4755-4767

[18] M.A. Ordal et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W, Appl. Opt., Volume 24 (1985), pp. 4493-4499

[19] H. Kogelnik Theory of dielectric waveguides (T. Tamir, ed.), Integrated Optics, Springer-Verlag, New York, 1995

[20] R. Reinisch et al. Gratings and prisms couplers: radiation pattern and m-line, Opt. Commun., Volume 120 (1995), pp. 121-128

[21] D.D. Maystre The integral method (R. Petitt, ed.), Electromagnetic Theory of Gratings, Springer-Verlag, Berlin, 1980, pp. 63-100

[22] M. Nazarov et al. THz surface plasmon jump between two metal edges, Opt. Commun., Volume 277 (2007), pp. 33-39

[23] L.S. Mukina et al. Propagation of THz plasmon pulse on corrugated and flat metal surface, Surf. Sci., Volume 600 (2006), pp. 4771-4776

[24] J.-F. Roux et al. Grating-assisted coupling of terahertz temporal waves into a dielectric waveguide studied by terahertz time-domain spectroscopy, Appl. Opt., Volume 41 (2002), pp. 6507-6513

[25] F. Aquistapace et al. Photo-variation of grating-assisted coupling of THz waves into a silicon waveguide, J. Appl. Phys., Volume 94 (2003), pp. 7888-7891

[26] T.-I. Jeon; D. Grischkowsky THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet, Appl. Phys. Lett., Volume 88 (2006), p. 061113

[27] M.M. Nazarov et al. Excitation and propagation of surface electromagnetic waves studied by terahertz spectrochronography, Laser Phys. Lett., Volume 2 (2005), pp. 471-475

[28] N. Laman; D. Grischkowsky Reduced conductivity in the terahertz skin-depth layer of metals, Appl. Phys. Lett., Volume 90 (2007), p. 122115

Cited by Sources:

Comments - Policy