[Cellules solaires à hétérojonction à base de nanofils de TiO2 et de P3HT]
Depuis plus de deux décennies, les cellules solaires organiques basées sur l'utilisation de molécules ou de polymères semi-conducteurs ont démontré de fortes potentialités. Néanmoins, et pour répondre aux limitations intrinsèques dues aux matériaux organiques (nature de l'exciton, durée de vie limitée, etc.), de nouvelles stratégies de composants hybrides basés sur l'association de matériaux organiques et inorganiques ont vu le jour. Ces nouvelles approches, basées sur l'utilisation de couches mésoporeuses inorganiques ou de nanocristaux semi-conducteurs accepteurs d'électrons, permettent en particulier un contrôle fin des architectures et des interfaces à l'échelle nanométrique. Dans ce contexte, ce travail a pour objectif la description des potentialités des composants hybrides pour la conversion photovoltaïque en s'appuyant sur un exemple récent de cellule à hétérojonction basée sur le mélange de nanofils de TiO2 avec un polymère conjugué.
Over the past decades, organic solar cells based on semiconducting polymers or small molecules have become a promising alternative to traditional inorganic photovoltaic devices. However, to address the intrinsic limitations of organic materials, such as charge separation yield, charge transport and durability, new strategies based on hybrid organic/inorganic materials have been explored. One such approach exploits mesoporous inorganic nanostructures as electron acceptors, which takes advantage of the potential to control the active layer structure and interface morphology through nanoparticle synthesis and processing. In this work, the potential of hybrid photovoltaics will be discussed and illustrated through a recent study of bulk heterojunction systems based on the blend of TiO2 nanorods with a conjugated polymer.
Mots-clés : Cellules solaires à heterojunction, Composants hybrides, Polymère conjugués, P3HT, Nanocristaux semi-conducteurs, TiO2
Johann Bouclé 1, 2 ; Sabina Chyla 3 ; Milo S.P. Shaffer 3 ; James R. Durrant 3 ; Donal D.C. Bradley 1 ; Jenny Nelson 1
@article{CRPHYS_2008__9_1_110_0, author = {Johann Boucl\'e and Sabina Chyla and Milo S.P. Shaffer and James R. Durrant and Donal D.C. Bradley and Jenny Nelson}, title = {Hybrid bulk heterojunction solar cells based on blends of {TiO\protect\textsubscript{2}} nanorods and {P3HT}}, journal = {Comptes Rendus. Physique}, pages = {110--118}, publisher = {Elsevier}, volume = {9}, number = {1}, year = {2008}, doi = {10.1016/j.crhy.2007.10.005}, language = {en}, }
TY - JOUR AU - Johann Bouclé AU - Sabina Chyla AU - Milo S.P. Shaffer AU - James R. Durrant AU - Donal D.C. Bradley AU - Jenny Nelson TI - Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT JO - Comptes Rendus. Physique PY - 2008 SP - 110 EP - 118 VL - 9 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2007.10.005 LA - en ID - CRPHYS_2008__9_1_110_0 ER -
%0 Journal Article %A Johann Bouclé %A Sabina Chyla %A Milo S.P. Shaffer %A James R. Durrant %A Donal D.C. Bradley %A Jenny Nelson %T Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT %J Comptes Rendus. Physique %D 2008 %P 110-118 %V 9 %N 1 %I Elsevier %R 10.1016/j.crhy.2007.10.005 %G en %F CRPHYS_2008__9_1_110_0
Johann Bouclé; Sabina Chyla; Milo S.P. Shaffer; James R. Durrant; Donal D.C. Bradley; Jenny Nelson. Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT. Comptes Rendus. Physique, New concepts for nanophotonics and nano-electronics, Volume 9 (2008) no. 1, pp. 110-118. doi : 10.1016/j.crhy.2007.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.005/
[1] Nature, 428 (2004), p. 911
[2] Nature, 353 (1991), p. 737
[3] Acc. Chem. Res., 33 (2000), p. 269
[4] et al. Nature, 376 (1995), p. 498
[5] et al. Adv. Func. Mater., 15 (2005), p. 1617
[6] J. Bouclé, et al., J. Mater. Chem. 17 (April 2007) 3141
[7] MRS Bull., 30 (2005), p. 23
[8] MRS Bull., 30 (2005), p. 37
[9] et al. Adv. Mater., 12 (2000), p. 1689
[10] et al. J. Appl. Phys., 95 (2004), p. 1473
[11] et al. Appl. Phys. Lett., 87 (2005), p. 023507
[12] Appl. Phys. Lett., 83 (2003), p. 3380
[13] Science, 295 (2002), p. 2425
[14] Adv. Mater., 16 (2004), p. 1009
[15] Phys. Rev. B, 54 (1996), p. 17628
[16] et al. Adv. Mater., 12 (2000), p. 1689
[17] et al. Appl. Phys. Lett., 86 (2005), p. 143101
[18] et al. J. Phys. Chem. B, 110 (2006), p. 7635
[19] et al. J. Appl. Phys., 97 (2005), p. 014914
[20] et al. Nano Lett., 6 (2006), p. 1789
[21] et al. Chem. Phys. Lett., 384 (2004), p. 372
[22] et al. Nanotechnology, 17 (2006), p. 5387
[23] et al. J. Am. Chem. Soc., 121 (1999), p. 1613
[24] S. Chyla, et al., in press
[25] J. Bouclé, et al., Adv. Func. Mater. (July 2007), in press, adfm.200700280
[26] J. Am. Chem. Soc., 125 (2003), p. 14539
[27] et al. Adv. Func. Mater., 15 (2005), p. 609
[28] et al. J. Phys. Chem., 100 (1996), p. 20056
[29] Adv. Func. Mater., 16 (2006), p. 1112
[30] et al. Appl. Phys. Lett., 87 (2005), p. 202106
[31] et al. J. Phys. Chem. B, 110 (2006), p. 25174
- Hybrid metal complex with TiO2/SiO2 composite-doped polymer for the enhancement of photo energy conversion in silicon solar panels, Journal of Materials Science: Materials in Electronics, Volume 34 (2023) no. 23 | DOI:10.1007/s10854-023-11079-1
- A TiO2 nanorod and perylene diimide based inorganic/organic nanoheterostructure photoanode for photoelectrochemical urea oxidation, Nanoscale Advances, Volume 5 (2023) no. 23, p. 6670 | DOI:10.1039/d3na00294b
- Advances in solar cell fabrication and applications using nanotechnology, Solar Energy Harvesting, Conversion, and Storage (2023), p. 223 | DOI:10.1016/b978-0-323-90601-2.00006-4
- Polymer nanocomposites for microelectronic devices and biosensors, Advanced Polymer Nanocomposites (2022), p. 205 | DOI:10.1016/b978-0-12-824492-0.00002-7
- (S,C) co-doped ZnO properties and enhanced photocatalytic activity, Applied Surface Science, Volume 505 (2020), p. 144541 | DOI:10.1016/j.apsusc.2019.144541
- Synthesis of Diamond‐Shaped Mesoporous Titania Nanobricks as pH‐Responsive Drug Delivery Vehicles for Cancer Therapy, ChemistrySelect, Volume 4 (2019) no. 28, p. 8225 | DOI:10.1002/slct.201900992
- Compound Semiconductor Solar Cells, Solar Energy Capture Materials (2019), p. 56 | DOI:10.1039/9781788013512-00056
- The role of solvent and structure in the kinetics of the excitons in porphyrin-based hybrid solar cells, Solar Energy, Volume 146 (2017), p. 368 | DOI:10.1016/j.solener.2017.03.006
- Bulk-heterojunction polymer solar cells with polyaniline-silica nanocomposites as an efficient hole-collecting layer, Journal of Nanophotonics, Volume 10 (2016) no. 1, p. 016011 | DOI:10.1117/1.jnp.10.016011
- Solar Cells and Their Generations, Organic Solar Cells (2016), p. 1 | DOI:10.1201/9781315370774-2
- Quantum dot sensitized solar cell based on poly (3-hexyl thiophene)/CdSe nanocomposites, Optical Materials, Volume 48 (2015), p. 44 | DOI:10.1016/j.optmat.2015.07.027
- Recent Advances in Quantum Dot Surface Chemistry, ACS Applied Materials Interfaces, Volume 6 (2014) no. 5, p. 3041 | DOI:10.1021/am405196u
- Interfacial Engineering of P3HT/ZnO Hybrid Solar Cells Using Phthalocyanines: A Joint Theoretical and Experimental Investigation, Advanced Energy Materials, Volume 4 (2014) no. 12 | DOI:10.1002/aenm.201301694
- Nanocomposite‐Based Bulk Heterojunction Hybrid Solar Cells, Journal of Nanomaterials, Volume 2014 (2014) no. 1 | DOI:10.1155/2014/243041
- Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells, Materials, Volume 7 (2014) no. 4, p. 2747 | DOI:10.3390/ma7042747
- Two Dimensional Layered Semiconductors: Emerging Materials for Solar Photovoltaics, Solar Cell Nanotechnology (2013), p. 117 | DOI:10.1002/9781118845721.ch4
- What Limits Photoconductance in Anatase TiO2 Nanostructures? A Real and Imaginary Microwave Conductance Study, The Journal of Physical Chemistry C, Volume 117 (2013) no. 16, p. 8032 | DOI:10.1021/jp400222t
- Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell, Applied Physics Letters, Volume 100 (2012) no. 15 | DOI:10.1063/1.3703602
- Anodic Ordered Titania Nanostructures and in-Situ Electropolymerized Poly-3-Methylthiophene Films for Hybrid Photovoltaic Solar Cells, Energy Procedia, Volume 31 (2012), p. 124 | DOI:10.1016/j.egypro.2012.11.174
- Metal oxide applications in organic-based photovoltaics, Materials Science and Technology, Volume 27 (2011) no. 9, p. 1357 | DOI:10.1179/026708311x13081465539809
- Conjugated polymer nanostructures for organic solar cell applications, Polymer Chemistry, Volume 2 (2011) no. 12, p. 2707 | DOI:10.1039/c1py00275a
- Hybrid solar cell based on blending of organic and inorganic materials—An overview, Renewable and Sustainable Energy Reviews, Volume 15 (2011) no. 2, p. 1228 | DOI:10.1016/j.rser.2010.09.017
- Synthesis and application in solar cell of poly(3-octylthiophene)/cadmium sulfide nanocomposite, Solar Energy Materials and Solar Cells, Volume 95 (2011) no. 2, p. 483 | DOI:10.1016/j.solmat.2010.09.006
- Polymer-based nanocomposites for organic optoelectronic devices. A review, Surface and Coatings Technology, Volume 206 (2011) no. 4, p. 742 | DOI:10.1016/j.surfcoat.2011.07.010
- Synthesis and photoelectric property of poly(3-octylthiophene)/ferric oxide complexes, Journal of Materials Science, Volume 45 (2010) no. 14, p. 3866 | DOI:10.1007/s10853-010-4442-3
- Synthesis and application in solar cell of poly(3-octylthiophene)/titania nanotubes composite, Organic Electronics, Volume 11 (2010) no. 8, p. 1449 | DOI:10.1016/j.orgel.2010.06.017
- Improved device performance based on crosslinking of poly (3-hexylthiophene), Synthetic Metals, Volume 160 (2010) no. 19-20, p. 2061 | DOI:10.1016/j.synthmet.2010.07.023
- Synthesis and photovoltaic property of poly(3-octylthiophene)/titanium dioxide/ferric oxide composite, Synthetic Metals, Volume 160 (2010) no. 19-20, p. 2167 | DOI:10.1016/j.synthmet.2010.08.003
- Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe, ACS Nano, Volume 3 (2009) no. 6, p. 1467 | DOI:10.1021/nn900324q
- Photovoltaics literature survey (No. 63), Progress in Photovoltaics: Research and Applications, Volume 16 (2008) no. 5, p. 455 | DOI:10.1002/pip.838
Cité par 30 documents. Sources : Crossref
Commentaires - Politique