Comptes Rendus
Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT
[Cellules solaires à hétérojonction à base de nanofils de TiO2 et de P3HT]
Comptes Rendus. Physique, New concepts for nanophotonics and nano-electronics, Volume 9 (2008) no. 1, pp. 110-118.

Depuis plus de deux décennies, les cellules solaires organiques basées sur l'utilisation de molécules ou de polymères semi-conducteurs ont démontré de fortes potentialités. Néanmoins, et pour répondre aux limitations intrinsèques dues aux matériaux organiques (nature de l'exciton, durée de vie limitée, etc.), de nouvelles stratégies de composants hybrides basés sur l'association de matériaux organiques et inorganiques ont vu le jour. Ces nouvelles approches, basées sur l'utilisation de couches mésoporeuses inorganiques ou de nanocristaux semi-conducteurs accepteurs d'électrons, permettent en particulier un contrôle fin des architectures et des interfaces à l'échelle nanométrique. Dans ce contexte, ce travail a pour objectif la description des potentialités des composants hybrides pour la conversion photovoltaïque en s'appuyant sur un exemple récent de cellule à hétérojonction basée sur le mélange de nanofils de TiO2 avec un polymère conjugué.

Over the past decades, organic solar cells based on semiconducting polymers or small molecules have become a promising alternative to traditional inorganic photovoltaic devices. However, to address the intrinsic limitations of organic materials, such as charge separation yield, charge transport and durability, new strategies based on hybrid organic/inorganic materials have been explored. One such approach exploits mesoporous inorganic nanostructures as electron acceptors, which takes advantage of the potential to control the active layer structure and interface morphology through nanoparticle synthesis and processing. In this work, the potential of hybrid photovoltaics will be discussed and illustrated through a recent study of bulk heterojunction systems based on the blend of TiO2 nanorods with a conjugated polymer.

Publié le :
DOI : 10.1016/j.crhy.2007.10.005
Keywords: Bulk-heterojunction, Hybrid, Solar cells, Conjugated polymers, P3HT
Mots-clés : Cellules solaires à heterojunction, Composants hybrides, Polymère conjugués, P3HT, Nanocristaux semi-conducteurs, TiO2

Johann Bouclé 1, 2 ; Sabina Chyla 3 ; Milo S.P. Shaffer 3 ; James R. Durrant 3 ; Donal D.C. Bradley 1 ; Jenny Nelson 1

1 Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
2 Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, United Kingdom
3 Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
@article{CRPHYS_2008__9_1_110_0,
     author = {Johann Boucl\'e and Sabina Chyla and Milo S.P. Shaffer and James R. Durrant and Donal D.C. Bradley and Jenny Nelson},
     title = {Hybrid bulk heterojunction solar cells based on blends of {TiO\protect\textsubscript{2}} nanorods and {P3HT}},
     journal = {Comptes Rendus. Physique},
     pages = {110--118},
     publisher = {Elsevier},
     volume = {9},
     number = {1},
     year = {2008},
     doi = {10.1016/j.crhy.2007.10.005},
     language = {en},
}
TY  - JOUR
AU  - Johann Bouclé
AU  - Sabina Chyla
AU  - Milo S.P. Shaffer
AU  - James R. Durrant
AU  - Donal D.C. Bradley
AU  - Jenny Nelson
TI  - Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 110
EP  - 118
VL  - 9
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.10.005
LA  - en
ID  - CRPHYS_2008__9_1_110_0
ER  - 
%0 Journal Article
%A Johann Bouclé
%A Sabina Chyla
%A Milo S.P. Shaffer
%A James R. Durrant
%A Donal D.C. Bradley
%A Jenny Nelson
%T Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT
%J Comptes Rendus. Physique
%D 2008
%P 110-118
%V 9
%N 1
%I Elsevier
%R 10.1016/j.crhy.2007.10.005
%G en
%F CRPHYS_2008__9_1_110_0
Johann Bouclé; Sabina Chyla; Milo S.P. Shaffer; James R. Durrant; Donal D.C. Bradley; Jenny Nelson. Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT. Comptes Rendus. Physique, New concepts for nanophotonics and nano-electronics, Volume 9 (2008) no. 1, pp. 110-118. doi : 10.1016/j.crhy.2007.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.005/

[1] S.R. Forrest Nature, 428 (2004), p. 911

[2] B. O'Regan; M. Grätzel Nature, 353 (1991), p. 737

[3] A. Hagfeldt; M. Grätzel Acc. Chem. Res., 33 (2000), p. 269

[4] J.J.M. Halls et al. Nature, 376 (1995), p. 498

[5] W. Ma et al. Adv. Func. Mater., 15 (2005), p. 1617

[6] J. Bouclé, et al., J. Mater. Chem. 17 (April 2007) 3141

[7] M. Grätzel MRS Bull., 30 (2005), p. 23

[8] K.M. Coakley MRS Bull., 30 (2005), p. 37

[9] A.C. Arango et al. Adv. Mater., 12 (2000), p. 1689

[10] P. Ravirajan et al. J. Appl. Phys., 95 (2004), p. 1473

[11] H. Wang et al. Appl. Phys. Lett., 87 (2005), p. 023507

[12] K.M. Coakley; M.D. McGehee Appl. Phys. Lett., 83 (2003), p. 3380

[13] W.U. Huynh; J.J. Dittmer; A.P. Alivisatos Science, 295 (2002), p. 2425

[14] W.J.E. Beek; M.M. Wienk; R.A.J. Janssen Adv. Mater., 16 (2004), p. 1009

[15] N.C. Greenham; X.G. Peng; A.P. Alivisatos Phys. Rev. B, 54 (1996), p. 17628

[16] A.C. Arango et al. Adv. Mater., 12 (2000), p. 1689

[17] P. Ravirajan et al. Appl. Phys. Lett., 86 (2005), p. 143101

[18] P. Ravirajan et al. J. Phys. Chem. B, 110 (2006), p. 7635

[19] B. Sun et al. J. Appl. Phys., 97 (2005), p. 014914

[20] P. Wang et al. Nano Lett., 6 (2006), p. 1789

[21] C.Y. Kwong et al. Chem. Phys. Lett., 384 (2004), p. 372

[22] T.-W. Zeng et al. Nanotechnology, 17 (2006), p. 5387

[23] T.J. Trentler et al. J. Am. Chem. Soc., 121 (1999), p. 1613

[24] S. Chyla, et al., in press

[25] J. Bouclé, et al., Adv. Func. Mater. (July 2007), in press, adfm.200700280

[26] P.D. Cozzoli; A. Kornowski; H. Weller J. Am. Chem. Soc., 125 (2003), p. 14539

[27] P. Ravirajan et al. Adv. Func. Mater., 15 (2005), p. 609

[28] Y. Tachibana et al. J. Phys. Chem., 100 (1996), p. 20056

[29] W.J.E. Beek; M.M. Wienk; R.A.J. Janssen Adv. Func. Mater., 16 (2006), p. 1112

[30] N. Kopidakis et al. Appl. Phys. Lett., 87 (2005), p. 202106

[31] K. Zhu et al. J. Phys. Chem. B, 110 (2006), p. 25174

  • T. Lurthu Pushparaj; E. Fantin Irudaya Raj; E. Francy Irudaya Rani; S. Darwin Hybrid metal complex with TiO2/SiO2 composite-doped polymer for the enhancement of photo energy conversion in silicon solar panels, Journal of Materials Science: Materials in Electronics, Volume 34 (2023) no. 23 | DOI:10.1007/s10854-023-11079-1
  • Jasmine Bezboruah; Devendra Mayurdhwaj Sanke; Ajay Vinayakrao Munde; Palak Trilochand Bhattad; Himadri Shekhar Karmakar; Sanjio S. Zade A TiO2 nanorod and perylene diimide based inorganic/organic nanoheterostructure photoanode for photoelectrochemical urea oxidation, Nanoscale Advances, Volume 5 (2023) no. 23, p. 6670 | DOI:10.1039/d3na00294b
  • Sami Iqbal; Xinli Guo; Jin Nanxi; Tong Zhang Advances in solar cell fabrication and applications using nanotechnology, Solar Energy Harvesting, Conversion, and Storage (2023), p. 223 | DOI:10.1016/b978-0-323-90601-2.00006-4
  • Mamun Rabbani; Md. Sharjis Ibne Wadud; Md Enamul Hoque Polymer nanocomposites for microelectronic devices and biosensors, Advanced Polymer Nanocomposites (2022), p. 205 | DOI:10.1016/b978-0-12-824492-0.00002-7
  • K. Dib; M. Trari; Y. Bessekhouad (S,C) co-doped ZnO properties and enhanced photocatalytic activity, Applied Surface Science, Volume 505 (2020), p. 144541 | DOI:10.1016/j.apsusc.2019.144541
  • Yanbing Wang; Qi Wang; Chunmei Zhang Synthesis of Diamond‐Shaped Mesoporous Titania Nanobricks as pH‐Responsive Drug Delivery Vehicles for Cancer Therapy, ChemistrySelect, Volume 4 (2019) no. 28, p. 8225 | DOI:10.1002/slct.201900992
  • Amita Singh; Ajay Singh Compound Semiconductor Solar Cells, Solar Energy Capture Materials (2019), p. 56 | DOI:10.1039/9781788013512-00056
  • Foroogh Arkan; Mohammad Izadyar The role of solvent and structure in the kinetics of the excitons in porphyrin-based hybrid solar cells, Solar Energy, Volume 146 (2017), p. 368 | DOI:10.1016/j.solener.2017.03.006
  • Mohsen Mohsennia; Maryam Massah Bidgoli; Mohammad Hossein Khoddami; Alireza Salehi; Farhad Akbari Boroumand Bulk-heterojunction polymer solar cells with polyaniline-silica nanocomposites as an efficient hole-collecting layer, Journal of Nanophotonics, Volume 10 (2016) no. 1, p. 016011 | DOI:10.1117/1.jnp.10.016011
  • Solar Cells and Their Generations, Organic Solar Cells (2016), p. 1 | DOI:10.1201/9781315370774-2
  • Preeti Sehgal; Anudeep kumar Narula Quantum dot sensitized solar cell based on poly (3-hexyl thiophene)/CdSe nanocomposites, Optical Materials, Volume 48 (2015), p. 44 | DOI:10.1016/j.optmat.2015.07.027
  • Douglas A. Hines; Prashant V. Kamat Recent Advances in Quantum Dot Surface Chemistry, ACS Applied Materials Interfaces, Volume 6 (2014) no. 5, p. 3041 | DOI:10.1021/am405196u
  • Giuseppe Mattioli; Sadok Ben Dkhil; Maria Ilenia Saba; Giuliano Malloci; Claudio Melis; Paola Alippi; Francesco Filippone; Paolo Giannozzi; Anil Kumar Thakur; Meriem Gaceur; Olivier Margeat; Abdou Karim Diallo; Christine Videlot‐Ackermann; Jörg Ackermann; Aldo Amore Bonapasta; Alessandro Mattoni Interfacial Engineering of P3HT/ZnO Hybrid Solar Cells Using Phthalocyanines: A Joint Theoretical and Experimental Investigation, Advanced Energy Materials, Volume 4 (2014) no. 12 | DOI:10.1002/aenm.201301694
  • Bich Phuong Nguyen; Taehoon Kim; Chong Rae Park; Sung Jin Kim Nanocomposite‐Based Bulk Heterojunction Hybrid Solar Cells, Journal of Nanomaterials, Volume 2014 (2014) no. 1 | DOI:10.1155/2014/243041
  • Ruchuan Liu Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells, Materials, Volume 7 (2014) no. 4, p. 2747 | DOI:10.3390/ma7042747
  • Mariyappan Shanmugam; Bin Yu Two Dimensional Layered Semiconductors: Emerging Materials for Solar Photovoltaics, Solar Cell Nanotechnology (2013), p. 117 | DOI:10.1002/9781118845721.ch4
  • Maria C. Fravventura; Dimitrios Deligiannis; Juleon M. Schins; Laurens D. A. Siebbeles; Tom J. Savenije What Limits Photoconductance in Anatase TiO2 Nanostructures? A Real and Imaginary Microwave Conductance Study, The Journal of Physical Chemistry C, Volume 117 (2013) no. 16, p. 8032 | DOI:10.1021/jp400222t
  • Mariyappan Shanmugam; Tanesh Bansal; Chris A. Durcan; Bin Yu Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell, Applied Physics Letters, Volume 100 (2012) no. 15 | DOI:10.1063/1.3703602
  • Nagore Imaz; Oihana Zubillaga; Gorka Imbuluzqueta; Francisco Cano Anodic Ordered Titania Nanostructures and in-Situ Electropolymerized Poly-3-Methylthiophene Films for Hybrid Photovoltaic Solar Cells, Energy Procedia, Volume 31 (2012), p. 124 | DOI:10.1016/j.egypro.2012.11.174
  • T Gershon Metal oxide applications in organic-based photovoltaics, Materials Science and Technology, Volume 27 (2011) no. 9, p. 1357 | DOI:10.1179/026708311x13081465539809
  • Jiun-Tai Chen; Chain-Shu Hsu Conjugated polymer nanostructures for organic solar cell applications, Polymer Chemistry, Volume 2 (2011) no. 12, p. 2707 | DOI:10.1039/c1py00275a
  • J. Chandrasekaran; D. Nithyaprakash; K.B. Ajjan; S. Maruthamuthu; D. Manoharan; S. Kumar Hybrid solar cell based on blending of organic and inorganic materials—An overview, Renewable and Sustainable Energy Reviews, Volume 15 (2011) no. 2, p. 1228 | DOI:10.1016/j.rser.2010.09.017
  • Zhiyue Han; Jingchang Zhang; Xiuying Yang; Weiliang Cao Synthesis and application in solar cell of poly(3-octylthiophene)/cadmium sulfide nanocomposite, Solar Energy Materials and Solar Cells, Volume 95 (2011) no. 2, p. 483 | DOI:10.1016/j.solmat.2010.09.006
  • Thien-Phap Nguyen Polymer-based nanocomposites for organic optoelectronic devices. A review, Surface and Coatings Technology, Volume 206 (2011) no. 4, p. 742 | DOI:10.1016/j.surfcoat.2011.07.010
  • Zhiyue Han; Jingchang Zhang; Xiuying Yang; Hong Zhu; Weiliang Cao Synthesis and photoelectric property of poly(3-octylthiophene)/ferric oxide complexes, Journal of Materials Science, Volume 45 (2010) no. 14, p. 3866 | DOI:10.1007/s10853-010-4442-3
  • Zhiyue Han; Jingchang Zhang; Xiuying Yang; Hong Zhu; Weiliang Cao Synthesis and application in solar cell of poly(3-octylthiophene)/titania nanotubes composite, Organic Electronics, Volume 11 (2010) no. 8, p. 1449 | DOI:10.1016/j.orgel.2010.06.017
  • Manoj Gaur; Jaya Lohani; R. Raman; V.R. Balakrishnan; P. Raghunathan; S.V. Eswaran Improved device performance based on crosslinking of poly (3-hexylthiophene), Synthetic Metals, Volume 160 (2010) no. 19-20, p. 2061 | DOI:10.1016/j.synthmet.2010.07.023
  • Zhiyue Han; Jingchang Zhang; Xiuying Yang; Hong Zhu; Weiliang Cao Synthesis and photovoltaic property of poly(3-octylthiophene)/titanium dioxide/ferric oxide composite, Synthetic Metals, Volume 160 (2010) no. 19-20, p. 2167 | DOI:10.1016/j.synthmet.2010.08.003
  • Jin Ho Bang; Prashant V. Kamat Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe, ACS Nano, Volume 3 (2009) no. 6, p. 1467 | DOI:10.1021/nn900324q
  • Avi Shalav Photovoltaics literature survey (No. 63), Progress in Photovoltaics: Research and Applications, Volume 16 (2008) no. 5, p. 455 | DOI:10.1002/pip.838

Cité par 30 documents. Sources : Crossref

Commentaires - Politique