Comptes Rendus
Physics/Atoms, molecules
SPROM – an efficient program for NMR/MRI simulations of inter- and intra-molecular multiple quantum coherences
Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 119-126.

A software package has been designed to simulate nuclear magnetic resonance spectra and images. Combining the product operator matrix with the non-linear Bloch equations, the software can efficiently simulate classical and quantum effects including scalar coupling, dipolar coupling, translational diffusion, chemical shift, radiation damping, transverse relaxation, and longitudinal relaxation. One of the most unique features of the software is its ability to incorporate effects of inter- and intra-molecular multiple quantum coherences in complex multiple-spin coupled systems, which are difficult with other existing software packages. The software, written in Visual C++, has a friendly graphical user interface and is easy to use.

Un progiciel a été développé pour simuler les spectres et les images de résonnance magnétique nucléaire. Combinant la matrice opérateur de produit et les équations de Bloch non-linéaires, le logiciel simule efficacement les effets classiques et quantiques, notamment le couplage scalaire, le couplage dipolaire, la diffusion translationnelle, le décalage chimique, l'amortissement radiatif, la relaxation transverse et la relaxation longitudinale. Un des aspects les plus originaux de ce logiciel est sa capacité à incorporer les effets de cohérences quantiques multiples inter- et intra-moléculaire dans les systèmes complexes de spins multiples couplés, ce qui est difficile avec les progiciels existants. Doté d'une interface graphique conviviale, lee logiciel, écrit en Visual C++, est facile d'utilisation.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crhy.2007.11.007
Keywords: Simulation software, Product operator matrix, Nuclear magnetic resonance, Magnetic resonance imaging, Inter- and intra-molecular multiple-quantum coherences
Mot clés : Progiciel de simulation, Matrice opérateur de produit, Résonnance magnétique nucléaire, Imagerie de résonnance magnétique, Cohérences quantiques multiples inter- et intra-moléculaire

Congbo Cai 1; Meijin Lin 1; Zhong Chen 1, 2; Xi Chen 1; Shuhui Cai 1; Jianhui Zhong 2

1 Departments of Physics and Communications Engineering, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
2 Department of Radiology, University of Rochester, Rochester, NY 14642, USA
@article{CRPHYS_2008__9_1_119_0,
     author = {Congbo Cai and Meijin Lin and Zhong Chen and Xi Chen and Shuhui Cai and Jianhui Zhong},
     title = {SPROM {\textendash} an efficient program for {NMR/MRI} simulations of inter- and intra-molecular multiple quantum coherences},
     journal = {Comptes Rendus. Physique},
     pages = {119--126},
     publisher = {Elsevier},
     volume = {9},
     number = {1},
     year = {2008},
     doi = {10.1016/j.crhy.2007.11.007},
     language = {en},
}
TY  - JOUR
AU  - Congbo Cai
AU  - Meijin Lin
AU  - Zhong Chen
AU  - Xi Chen
AU  - Shuhui Cai
AU  - Jianhui Zhong
TI  - SPROM – an efficient program for NMR/MRI simulations of inter- and intra-molecular multiple quantum coherences
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 119
EP  - 126
VL  - 9
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.11.007
LA  - en
ID  - CRPHYS_2008__9_1_119_0
ER  - 
%0 Journal Article
%A Congbo Cai
%A Meijin Lin
%A Zhong Chen
%A Xi Chen
%A Shuhui Cai
%A Jianhui Zhong
%T SPROM – an efficient program for NMR/MRI simulations of inter- and intra-molecular multiple quantum coherences
%J Comptes Rendus. Physique
%D 2008
%P 119-126
%V 9
%N 1
%I Elsevier
%R 10.1016/j.crhy.2007.11.007
%G en
%F CRPHYS_2008__9_1_119_0
Congbo Cai; Meijin Lin; Zhong Chen; Xi Chen; Shuhui Cai; Jianhui Zhong. SPROM – an efficient program for NMR/MRI simulations of inter- and intra-molecular multiple quantum coherences. Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 119-126. doi : 10.1016/j.crhy.2007.11.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.11.007/

[1] H. Hagslatt; B. Jonsson; M. Nyden; O. Soderman Predictions of pulsed field gradient NMR echo-decays for molecules diffusing in various restrictive geometries. Simulations of diffusion propagators based on a finite element method, J. Magn. Reson., Volume 161 (2003), pp. 138-147

[2] C.L. Chin; F.W. Wehrli; S.N. Hwang; M. Takahashi; D.B. Hackney Biexponential diffusion attenuation in the rat spinal cord: computer simulations based on anatomic images of axonal architecture, Magn. Reson. Med., Volume 47 (2002), pp. 455-460

[3] M.H. Blees The effect of finite duration of gradient pulses on the pulsed-field-gradient NMR method for studying restricted diffusion, J. Magn. Reson. A, Volume 109 (1994), pp. 203-209

[4] P. Allard; M. Helgstrand; T. Härd A method for simulation of NOESY, ROESY, and off-resonance ROESY spectra, J. Magn. Reson., Volume 129 (1997), pp. 19-29

[5] R.P.F. Kanters; B.W. Char; A.W. Addison A computer-algebra application for the description of NMR experiments using the product-operator formalism, J. Magn. Reson. A, Volume 101 (1993), pp. 23-29

[6] M. Edén Computer simulations in solid-state NMR.I. Spin dynamics theory, Concepts Magn. Reson. A, Volume 17 (2003), pp. 117-154

[7] É. Prost; S. Bourg; J.M. Nuzillard Automatic first-order multiplet analysis in liquid-state NMR, C. R. Chimie, Volume 9 (2006), pp. 498-502

[8] H. Cheng; Q. Zhao; G.R. Duensing; W.A. Edelstein; D. Spencer; N. Browne; C. Saylor; M. Limkeman SmartPhantom – an fMRI simulator, Magn. Reson. Imaging, Volume 24 (2006), pp. 301-313

[9] É. Prost; P. Sizun; M. Piotto; J.M. Nuzillard A simple scheme for the design of solvent-suppression pulses, J. Magn. Reson., Volume 159 (2002), pp. 76-81

[10] H.C. Torrey Bloch equations with diffusion terms, Phys. Rev., Volume 104 (1956), pp. 563-565

[11] P.L. De Sousa; D. Gounot; D. Grucker Flow effects in long-range dipolar field MRI, J. Magn. Reson., Volume 162 (2003), pp. 356-363

[12] L.A. Stables; R.P. Kennan; A.W. Anderson; J.C. Gore Density matrix simulations of the effects of J coupling in spin echo and fast spin echo imaging, J. Magn. Reson., Volume 140 (1999), pp. 305-314

[13] W.B. Blanton BlochLib: a fast NMR C++ tool kit, J. Magn. Reson., Volume 162 (2003), pp. 269-283

[14] M. Helgstrand; P. Allard QSim, a program for NMR simulations, J. Biomol. NMR, Volume 30 (2004), pp. 71-80

[15] C.B. Cai; Z. Chen; S.H. Cai; J.H. Zhong A simulation algorithm based on Bloch equations and product operator matrix: application to dipolar and scalar couplings, J. Magn. Reson., Volume 172 (2005), pp. 242-253

[16] C.B. Cai; Z. Chen; S.H. Cai; L.P. Hwang; J.H. Zhong Finite difference simulation of diffusion behaviors under inter- and intra-molecular multiple-quantum coherences in liquid NMR, Chem. Phys. Lett., Volume 407 (2005), pp. 438-443

[17] Z. Chen; X.Q. Zhu; S.H. Cai; J.H. Zhong Suppression of undesired peaks due to residual intermolecular dipolar interactions in liquid NMR, Chem. Phys. Lett., Volume 417 (2006), pp. 48-52

[18] X.Q. Zhu; Z. Chen; S.H. Cai; J.H. Zhong Selection of intra- or inter-molecular multiple-quantum coherences in NMR of highly polarized solution, Physica B, Volume 362 (2005), pp. 286-294

[19] X.Q. Zhu; Z. Chen; S.H. Cai; J.H. Zhong Formation and identification of pure intermolecular zero-quantum coherence signal in liquid NMR, Chem. Phys. Lett., Volume 421 (2006), pp. 171-178

[20] G. Deville; M. Bernier; J.M. Delrieux NMR multiple echoes observed in solid 3H, Phys. Rev. B, Volume 19 (1979), pp. 5666-5688

[21] J. Jeener; A. Vlassenbroek; P. Broekaert Unified derivation of the dipolar field and relaxation terms in the Bloch–Redfield equations of liquid NMR, J. Chem. Phys., Volume 103 (1995), pp. 1309-1332

[22] S. Garrett-Roe; W.S. Warren Numerical studies of intermolecular multiple quantum coherences: High-resolution NMR in inhomogeneous fields and contrast enhancement in MRI, J. Magn. Reson., Volume 146 (2000), pp. 1-13

[23] M.L. Liu; X. Zhang Multiple-quantum J-resolved NMR spectroscopy (MQ-JRES): Measurement of multiple-quantum relaxation rates and relative signs of spin coupling constants, J. Magn. Reson., Volume 146 (2000), pp. 277-282

[24] P.T. Callaghan A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms, J. Magn. Reson., Volume 129 (1997), pp. 74-84

[25] C.L. Chin; F.W. Wehrli; S.N. Hwang; D.L. Jaggard; D.B. Hackney; S.W. Wehrli Feasibility of probing boundary morphology of structured materials by 2D NMR q-space imaging, J. Magn. Reson., Volume 160 (2003), pp. 20-25

[26] J. Jeener Macroscopic molecular diffusion in liquid NMR, revisited, Concepts Magn. Reson., Volume 14 (2002), pp. 79-88

[27] S. Fichele; M.N. Woodhouse; P.D. Griffiths; E.J.R.V. Beek; J.M. Wild Investigating He-3 diffusion NMR in the lungs using finite difference simulations and in vivo PGSE experiments, J. Magn. Reson., Volume 167 (2004), pp. 1-11

[28] H. Cheng; F. Huang Magnetic resonance imaging image intensity correction with extrapolation and adaptive smoothing, Magn. Reson. Med., Volume 55 (2006), pp. 959-966

[29] W. Barros; P.L. De Sousa; M. Engelsberg Low field intermolecular double-quantum coherence imaging via the Overhauser effect, J. Magn. Reson., Volume 165 (2003), pp. 175-179

[30] M. Engelsberg; W. Barros; F. Hallwass Intermolecular double-quantum coherences in two-dimensional spectra of binary mixtures in solution. The role of diffusion, J. Chem. Phys., Volume 120 (2004), pp. 10659-10665

[31] R. Bowtell; S. Gutteridge; C. Ramanathan Imaging the long-range dipolar field in structured liquid state samples, J. Magn. Reson., Volume 150 (2001), pp. 147-155

Cited by Sources:

Comments - Policy