Comptes Rendus
Propagation constants of guided waves in surface plasmon polariton gap waveguides excited through an I-shaped aperture
[Constantes de propagation des ondes guidées dans les guides optiques à fente à plasmon–polariton de surface excités à travers d'une ouverture en forme de I]
Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 16-23.

Les ondes guidées dans un guide optiques à fente à plasmon–polariton de surface (SPGW) excité par un faisceau gaussien à travers un diaphragme en forme de I ont été étudiées au moyen de simulations tridimensionnelles basées sur une équation intégrale de volume. Les champs optiques excités dans un SPGW sont étudiés dans des conditions pratiques. Les constantes de propagation complexes sont calculées à partir des champs optiques simulés en utilisant une méthode des moindres carrés. La variation de la constante de propagation (c'est-à-dire des constantes d'atténuation et de déphasage) en fonction de la largeur de la fente et de sa profondeur est étudiée.

The guided waves in the surface plasmon polariton gap waveguide (SPGW) excited by the Gaussian beam through the I-shaped aperture have been investigated by the three-dimensional simulations using a volume integral equation. Optical fields excited in the SPGW are investigated under practical conditions. The complex propagation constants are calculated from the simulated optical fields using the least-squares fitting. The dependence of the propagation constant, i.e., attenuation and phase constants, on the gap-width and on the gap-depth of SPGW is investigated.

Publié le :
DOI : 10.1016/j.crhy.2007.10.010
Keywords: Surface plasmon, Waveguide, Integral equation, Propagation constant
Mot clés : Plasmon de surface, Guide d'onde, Guide optique, Équation intégrale, Constante de propagation

Kazuo Tanaka 1 ; Masahiro Tanaka 1 ; Kiyofumi Katayama 2 ; Daisuke Miyahara 1

1 Department of Electronics and Computer Engineering, Gifu University, Yanagido 1-1, Gifu City, Japan 501-1193
2 Faculty of Administration and Informatics, University of Hamamatsu, Hamamatsu City, Japan 431-2102
@article{CRPHYS_2008__9_1_16_0,
     author = {Kazuo Tanaka and Masahiro Tanaka and Kiyofumi Katayama and Daisuke Miyahara},
     title = {Propagation constants of guided waves in surface plasmon polariton gap waveguides excited through an {I-shaped} aperture},
     journal = {Comptes Rendus. Physique},
     pages = {16--23},
     publisher = {Elsevier},
     volume = {9},
     number = {1},
     year = {2008},
     doi = {10.1016/j.crhy.2007.10.010},
     language = {en},
}
TY  - JOUR
AU  - Kazuo Tanaka
AU  - Masahiro Tanaka
AU  - Kiyofumi Katayama
AU  - Daisuke Miyahara
TI  - Propagation constants of guided waves in surface plasmon polariton gap waveguides excited through an I-shaped aperture
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 16
EP  - 23
VL  - 9
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.10.010
LA  - en
ID  - CRPHYS_2008__9_1_16_0
ER  - 
%0 Journal Article
%A Kazuo Tanaka
%A Masahiro Tanaka
%A Kiyofumi Katayama
%A Daisuke Miyahara
%T Propagation constants of guided waves in surface plasmon polariton gap waveguides excited through an I-shaped aperture
%J Comptes Rendus. Physique
%D 2008
%P 16-23
%V 9
%N 1
%I Elsevier
%R 10.1016/j.crhy.2007.10.010
%G en
%F CRPHYS_2008__9_1_16_0
Kazuo Tanaka; Masahiro Tanaka; Kiyofumi Katayama; Daisuke Miyahara. Propagation constants of guided waves in surface plasmon polariton gap waveguides excited through an I-shaped aperture. Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 16-23. doi : 10.1016/j.crhy.2007.10.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.010/

[1] J. Takahara; S. Yamagishi; H. Taki; A. Morimoto; T. Kobayashi Opt. Lett., 22 (1997), pp. 475-477

[2] W.L. Bames; A. Dereux; T.W. Ebbesen Nature, 424 (2003), pp. 824-830

[3] S.I. Bozhevolnyi; V.S. Volkov; E. Devaux; T.W. Ebbesen Phys. Rev. Lett., 95 (2005), p. 046802

[4] L. Salomon; G. Bassou; H. Aourag; J.P. Dufour; F. de Fornel; F. Carcenac; A.V. Zayats Phys. Rev. B, 65 (2002), p. 125409

[5] R. Charbonneau; P. Berini; E. Berolo; E. Lisicka-Shrzek Opt. Lett., 25 (2000), pp. 844-846

[6] D.F.P. Pile; D.K. Gramotnev Opt. Lett., 29 (2004), pp. 1069-1071

[7] D.K. Gramotnev; D.F.P. Pile Appl. Phys. Lett., 85 (2004), pp. 6323-6325

[8] T. Goto; Y. Katagiri; H. Fukuda; H. Shinojima; Y. Nakano; I. Kobayashi; Y. Mitsuoka Appl. Phys. Lett., 84 (2004), pp. 852-854

[9] H. Ditlbacher; J.R. Krenn; G. Schider; A. Leitner; F.R. Aussenegg Appl. Phys. Lett., 81 (2002), pp. 1753-1755

[10] K. Tanaka; M. Tanaka Appl. Phys. Lett., 82 (2003), pp. 1158-1160

[11] K. Tanaka; M. Tanaka Jpn. J. Appl. Phys., 42 (2003), p. L585-L588

[12] K. Tanaka; M. Tanaka; T. Sugiyama Opt. Express, 13 (2005), pp. 256-266

[13] K. Tanaka; M. Tanaka; T. Sugiyama J. Light. Tech., 23 (2005), pp. 3857-3863

[14] L. Lui; Z. Han; S. He Opt. Express, 13 (2005), pp. 6645-6650

[15] B. Wang; G.P. Wang Opt. Express, 13 (2005), pp. 10558-10563

[16] D.F.P. Pile; T. Ogawa; D.K. Gramotnev; Y. Matsuzaki; K.C. Vernon; K. Yamaguchi; T. Okamoto; M. Haraguchi; M. Fukui Appl. Phys. Lett., 87 (2005), p. 261114

[17] Computational Electromagnetics Frequency-Domain Method of Moments (E.K. Miller; L. Medgyesi-Mitschnag; E.H. Newsman, eds.), Institute of Electrical and Electronics Engineers Inc., 1992

[18] P. Zwamborn; P.M. van den Berg IEEE Trans. MTT, 40 (1992), pp. 1757-1766

[19] G.S. Smith An Introduction to Classical Electromagnetic Radiation, Cambridge University, New York, 1997

[20] R. Barrett; M. Berry; T.F. Chan; J. Demmel; J. Donato; J. Dongarra; V. Eijkhout; R. Pozo; C. Romine; H. van der Vorst Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Society for Industrial and Applied Mathematics, 1994

[21] D.F.P. Pile; T. Ogawa; D.K. Gramotnev; T. Okamoto; M. Haraguchi; M. Fukui; S. Matsuo Appl. Phys. Lett., 87 (2005), p. 061106

[22] J.J. Burk; G.I. Stegeman; T. Tamir Phys. Rev. B, 33 (1986), pp. 5186-5201

Cité par Sources :

Commentaires - Politique