[Cristaux photoniques et métamatériaux]
Les résultats récents obtenus sur les composants semiconducteurs à cristal photonique sont très prometteurs pour les futurs développements des cristaux photoniques et de leurs applications aux circuits photoniques intégrés. Les performances des composants reposent surtout sur le fort confinement de la lumière dû aux effets de bande interdite photonique, mais les cristaux photoniques présentent aussi des propriétés remarquables de dispersion dans leurs bandes de transmission, ouvrant ainsi la perspective de nouvelles fonctions optiques. Les effets de lumière lente, de supercollimation, de superprisme et de réfraction négative sont parmi les phénomènes fascinants qui motivent aujourd'hui la communauté. Les études dans ces directions sont parallèles à celles sur les métamatériaux dont on attend un contrôle simultané de la permittivité diélectrique et de la perméabilité magnétique. Dans cet article, nous faisons une brève revue de quelques avancées importantes sur les cristaux photoniques et les métamatériaux, ces deux sujets ayant reçu une attention particulière à l'atelier « Nanosciences et Radioélectricité » organisé par le CNFRS à Paris les 20 et 21 Mars 2007.
Recent results obtained on semiconductor-based photonic crystal devices are of great promise for future developments of photonic crystals and their applications to ‘all-photonic’ integrated circuits. Device performance mostly relies on the strong confinement of light thanks to photonic bandgap effects, but photonic crystals also exhibit remarkable dispersion properties in their transmission bands, thus opening the perspective of new optical functionalities. Slow light, supercollimation, superprism, and negative refraction effects are among the fascinating phenomena which strongly motivate the community. Studies in these directions parallel those on metamaterials, which are expected to provide a simultaneous control of the dielectric permittivity and of the magnetic permeability. In this article, we briefly review some important advances on photonic crystals and metamaterials, as these two topics received a particular attention during the “Nanosciences et Radioélectricité” workshop organized by CNFRS in Paris on the 20th and 21st of March 2007.
Mots-clés : Cristaux photoniques, Optique intégrée, Réfraction négative, Métamatériaux, Plasmonique
Jean-Michel Lourtioz 1
@article{CRPHYS_2008__9_1_4_0, author = {Jean-Michel Lourtioz}, title = {Photonic crystals and metamaterials}, journal = {Comptes Rendus. Physique}, pages = {4--15}, publisher = {Elsevier}, volume = {9}, number = {1}, year = {2008}, doi = {10.1016/j.crhy.2007.10.006}, language = {en}, }
Jean-Michel Lourtioz. Photonic crystals and metamaterials. Comptes Rendus. Physique, New concepts for nanophotonics and nano-electronics, Volume 9 (2008) no. 1, pp. 4-15. doi : 10.1016/j.crhy.2007.10.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.006/
[1] Phys. Rev. Lett., 67 (1991), p. 2295
[2] Photonic Crystals: Towards Nanoscale Photonic Devices, Springer-Verlag, Berlin/Heidelberg/New York, 2005
[3] Opt. Express, 14 (2006), p. 1996
[4] Phys. Rev. B, 72 (2005), p. 115102
[5] Opt. Lett., 31 (2006), p. 745
[6] Science, 305 (2004), p. 1444
[7] New J. Phys., 8 (2006), p. 208
[8] Phys. Rev. Lett., 87 (2001), p. 253902
[9] Appl. Phys. Lett., 74 (1999), p. 1212
[10] Phys. Rev. B, 58 (1998), p. R10096
[11] Phys. Rev. B, 62 (2000), p. 10696
[12] Phys. Rev. B, 65 (2002), p. R201104
[13] Phys. Rev. Lett., 92 (2004), p. 127401
[14] Soviet Phys. Uspekhi, 10 (1968), p. 509
[15] IEEE Trans. Microw. Theory Tech., 47 (1999), p. 2075
[16] Phys. Rev. Lett., 85 (2000), p. 3966
[17] Phys. Rev. Lett., 84 (2000), p. 4184
[18] Science, 305 (2004), p. 788
[19] Nature, 391 (1998), p. 667
[20] J. Appl. Phys., 95 (2004), p. 2242
[21] Appl. Phys. Lett., 88 (2006), p. 011112
[22] Appl. Phys. Lett., 81 (2002), p. 5102
[23] Opt. Express, 14 (2006), p. 9269
[24] Opt. Express, 14 (2006), p. 9203
[25] Optical microcavities, Nature, Volume 424 (2005), p. 839
[26] Nature, 425 (2003), p. 944
[27] Appl. Phys. Lett., 90 (2007), p. 101118
[28] Phys. Rev., 69 (1946), p. 681
[29] Appl. Phys. Lett., 87 (2005), p. 163107
[30] Phys. Rev. Lett., 96 (2006), p. 127404
[31] Phys. Rev. Lett., 92 (2004), p. 127902
[32] Nature, 436 (2005), p. 87
[33] Opt. Express, 11 (2003), p. 2927
[34] Opt. Express, 12 (2004), p. 1622
[35] X. Checoury, Thèse de l'Université Paris-XI, 2005
[36] Electron. Lett., 39 (2003), p. 526
[37] Opt. Express, 12 (2004), p. 4136
[38] Opt. Express, 4 (1999), p. 167
[39] Appl. Phys. Lett., 85 (2004), p. 5502
[40] Appl. Phys. Lett., 86 (2005), p. 151111
[41] Appl. Phys. Lett., 89 (2006), p. 071108
[42] Appl. Phys. Lett., 82 (2003), p. 4
[43] Opt. Lett., 32 (2007), p. 1153
[44] IEEE J. Sol. State Circuits, 41 (2006), p. 2945
[45] Phys. Rev. Lett., 87 (2001), p. 253902
[46] Nature, 438 (2005), p. 65
[47] Opt. Express, 15 (2007), p. 219
[48] Phys. Rev. B, 54 (1996), p. 5742
[49] Opt. Express, 4 (1999), p. 167
[50] Opt. Express, 12 (2004), p. 6606
[51] IEEE J. Quantum Electron., 38 (2002), p. 915
[52] Opt. Express, 12 (2004), p. 5690
[53] Opt. Express, 14 (2006), p. 2003
[54] Appl. Phys. Lett., 86 (2005), p. 101107
[55] J. Phys. D: Appl. Phys., 40 (2007), p. 2635
[56] Phys. Rev. Lett., 93 (2004), p. 073902
[57] Opt. Lett., 30 (2005), p. 2278
[58] Phys. Rev. B, 73 (2006), p. 235119
[59] E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, J.-M. Lourtioz, private communication
[60] Phys. Rev. Lett., 85 (2000), p. 2933
[61] Phys. Rev. Lett., 76 (1996), p. 4773
[62] Science, 292 (2001), p. 77
[63] A. Djermoun, A. de Lustrac, J.-M. Lourtioz, Photonics and Nanostructures: Fundamental and Applications, vol. 5, 2007, p. 21
[64] Electrodynamics of Continuous Media, Oxford, Pergamon, 1960 (Section 60)
[65] Phys. Rev. Lett., 95 (2005), p. 203901
[66] J. Opt. Quant. Electron., 39 (2007), p. 273
[67] C. R. Physique, 9 (2008) no. 1, pp. 31-40
[68] Nature, 438 (2005), p. 335
[69] Phys. Rev. Lett., 97 (2006), p. 073905
[70] J. Opt. Soc. Am. A, 21 (2004), p. 122
[71] Science, 308 (2005), p. 534
[72] Appl. Phys. Lett., 84 (2004), p. 4403
[73] Appl. Phys. Lett., 88 (2006), p. 084103
[74] Science, 312 (2006), p. 1780
[75] Science, 314 (2006), p. 977
[76] Nature Photonics, 1 (2007), p. 224
[77] Opt. Express, 14 (2006), p. 8827
[78] Plasmonics: Fundamentals and Applications, Springer-Verlag, 2007
[79] Appl. Phys. Lett., 88 (2006), p. 051112
[80] Phys. Rev. B, 76 (2007), p. 041102
[81] C. R. Physique, 9 (2008) no. 1, pp. 24-30
[82] Nature, 424 (2003), pp. 847-851
[83] Opt. Express, 10 (2002), pp. 1285-1290
- Harnessing chromatic dispersion for blood cancer detection using photonic crystal fibre sensors, Molecular Physics, Volume 123 (2025) no. 3 | DOI:10.1080/00268976.2024.2364042
- Multi - Purpose Photonic Crystal-Based Sensor Design by Finite Element Method, Journal of Physics: Conference Series, Volume 2315 (2022) no. 1, p. 012040 | DOI:10.1088/1742-6596/2315/1/012040
- Experimental investigation of biological and mechanical properties of CoCrMo based selective laser melted metamaterials for bone implant manufacturing, Procedia CIRP, Volume 89 (2020), p. 79 | DOI:10.1016/j.procir.2020.05.122
- Dispersion properties of one-dimensional magnetized ferrite photonic crystals in transverse magnetization configuration for transverse magnetic modes, The European Physical Journal D, Volume 72 (2018) no. 9 | DOI:10.1140/epjd/e2018-90105-0
- Modeling and Performance Analysis of Metallic Plasmonic Nano-Antennas for Wireless Optical Communication in Nanonetworks, IEEE Access, Volume 5 (2017), p. 6389 | DOI:10.1109/access.2017.2690990
- Analysis of trapped oscillation modes in magnetized PPC and its tunability for variable plasma parameters, Optics Communications, Volume 382 (2017), p. 7 | DOI:10.1016/j.optcom.2016.07.063
- , 2016 Progress in Electromagnetic Research Symposium (PIERS) (2016), p. 4577 | DOI:10.1109/piers.2016.7735691
- Photonic band structure of two-dimensional metal/dielectric photonic crystals, Journal of Physics D: Applied Physics, Volume 48 (2015) no. 35, p. 355103 | DOI:10.1088/0022-3727/48/35/355103
- , 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014) (2014), p. 342 | DOI:10.1109/icspct.2014.6885026
- A photonic crystal biosensor with temperature dependency investigation of micro-cavity resonator, Optik, Volume 125 (2014) no. 21, p. 6562 | DOI:10.1016/j.ijleo.2014.08.043
- , 2013 21st Iranian Conference on Electrical Engineering (ICEE) (2013), p. 1 | DOI:10.1109/iraniancee.2013.6599792
- Computational study of a label-free biosensor based on a photonic crystal nanocavity resonator, Applied Optics, Volume 52 (2013) no. 29, p. 7206 | DOI:10.1364/ao.52.007206
- Four-channel label-free photonic crystal biosensor using nanocavity resonators, Photonic Sensors, Volume 3 (2013) no. 3, p. 231 | DOI:10.1007/s13320-013-0110-y
- Mesoscopic Self-Collimation and Slow Light in All-Positive Index Layered Photonic Crystals, Physical Review Letters, Volume 108 (2012) no. 3 | DOI:10.1103/physrevlett.108.037401
- Incident-angle-insensitive and polarization independent polarization rotator, Optics Express, Volume 18 (2010) no. 11, p. 11990 | DOI:10.1364/oe.18.011990
- , Proceedings of the IEEE 2010 National Aerospace Electronics Conference (2010), p. 338 | DOI:10.1109/naecon.2010.5712974
- Les métamatériaux, des micro-ondes à l’optique : théorie et applications, Annales de Physique, Volume 34 (2009) no. 2-3, p. 1 | DOI:10.1051/anphys/2010002
- Understanding the electroluminescence emitted by single molecules in scanning tunneling microscopy experiments, Physical Review B, Volume 78 (2008) no. 12 | DOI:10.1103/physrevb.78.125107
Cité par 18 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier