[Le système de Fe–Cr : modélisation atomique des propriétés thermodynamiques et cinétiques de transfomations des phases]
Pour comprendre les propriétés des défauts d'irradiation et les cinétiques d'évolution des microstructures des alliages Fe–Cr, nous utilisons la théorie de la fonctionnelle de la densité combinée à des approches statistiques de type développement d'amas et Monte Carlo. L'énergie de mélange du système Fe–Cr présente un minimum pour une teneur en Cr de 6,25%, ce qui est en accord avec la prédiction des calculs de la structure ordonnée Fe15Cr, basés sur la fonctionnelle de la densité. Pour une teneur de 50% en Cr, on trouve une enthalpie de formation qui est quatre fois plus petite que celle calculée dans l'approche CPA. Nous discutons les propriétés thermodynamiques et la précipitation dans le système Fe–Cr en terme de séparation des phases Fe15Cr et
To understand the behaviour of irradiated defects and kinetic pathways of micro-structural evolution in Fe–Cr alloys, we use a combination of density functional theory with statistical approaches involving cluster expansions and Monte Carlo simulations. A lowest negative mixing enthalpy is found at 6.25% Cr that is consistent with our DFT prediction of an ordered Fe15Cr structure. At 50% Cr, it is found that the predicted enthalpy of formation is 4 times smaller than that calculated by the CPA approach. Thermodynamic and precipitation properties are then discussed in term of segregation between the Fe15Cr and
Mots-clés : Alliages Fe–Cr, Thermodynamiques, Kinétiques
Duc Nguyen-Manh 1 ; M.Yu. Lavrentiev 1 ; Sergei L. Dudarev 1
@article{CRPHYS_2008__9_3-4_379_0, author = {Duc Nguyen-Manh and M.Yu. Lavrentiev and Sergei L. Dudarev}, title = {The {Fe{\textendash}Cr} system: atomistic modelling of thermodynamics and kinetics of phase transformations}, journal = {Comptes Rendus. Physique}, pages = {379--388}, publisher = {Elsevier}, volume = {9}, number = {3-4}, year = {2008}, doi = {10.1016/j.crhy.2007.10.011}, language = {en}, }
TY - JOUR AU - Duc Nguyen-Manh AU - M.Yu. Lavrentiev AU - Sergei L. Dudarev TI - The Fe–Cr system: atomistic modelling of thermodynamics and kinetics of phase transformations JO - Comptes Rendus. Physique PY - 2008 SP - 379 EP - 388 VL - 9 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2007.10.011 LA - en ID - CRPHYS_2008__9_3-4_379_0 ER -
%0 Journal Article %A Duc Nguyen-Manh %A M.Yu. Lavrentiev %A Sergei L. Dudarev %T The Fe–Cr system: atomistic modelling of thermodynamics and kinetics of phase transformations %J Comptes Rendus. Physique %D 2008 %P 379-388 %V 9 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2007.10.011 %G en %F CRPHYS_2008__9_3-4_379_0
Duc Nguyen-Manh; M.Yu. Lavrentiev; Sergei L. Dudarev. The Fe–Cr system: atomistic modelling of thermodynamics and kinetics of phase transformations. Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 379-388. doi : 10.1016/j.crhy.2007.10.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.011/
[1] J. Nucl. Mater., 233–237 (1996), p. 138
[2] J. Nucl. Mater., 87 (1979), p. 25
[3] Prog. Mater. Sci., 52 (2007), p. 255
[4] J. Phys.: Condens. Matter, 17 (2005), p. 7097
[5] Prog. Mater. Sci., 52 (2007), p. 299
[6] J. Nucl. Mater., 321 (2003), pp. 84-90
[7] Phys. Rev. Lett., 95 (2005), p. 075702
[8] Proceedings of the NATO ASI on “Statics and Dynamics of Alloy Phase Transformations” (P.E.A. Turchi; A. Gonis, eds.), Plenum Press, New York, 1994, p. 361
[9] Phys. Rev. B, 69 (2004), p. 020103(R)
[10] Phys. Rev. Lett., 93 (2004), p. 067202
[11] Phys. Rev. B, 75 (2007), p. 014208
[12] D. Nguyen-Manh, M.Yu. Lavrentiev, S.L. Dudarev, in: P. Gumbsch (Ed.), “Multiscale Materials Modeling”, Third International Conference, September 2006, Freiburg, Germany, pp. 767–770; J. Comp. Mater. Design (2007)
[13] Phys. Rev. B, 74 (2006), p. 224207
[14] Order and Phase Stability in Alloys, Elsevier, 1991
[15] CALPHAD, Calculation of Phase Diagrams, Pergamon, 1998
[16] J. Phys. F: Met. Phys., 13 (1983), p. 2351
[17] Phys. Met. Metallogr., 97 (2004), p. 4336
[18] Phys. Rev. B, 73 (2006), p. 104416
[19] Comp. Mat. Sci. (2007)
[20] VASP the GUIDE, Universität Wien, Austria, 2003
[21] Phys. Rev. B, 50 (1994), p. 3861
[22] A. Froideval, M. Samaras, M. Victoria, W. Hoffelner, Abstract No. JJ3.6, MRS Fall Meeting, November, Boston, 2006
[23] Phys. Rev. Lett., 53 (1984), p. 687
[24] Phys. Rev. B, 52 (1995), p. 3280
[25] Appl. Phys. Lett., 89 (2006), p. 121902
[26] Phys. Rev. Lett., 92 (2004), p. 175503
[27] Phys. Rev. B, 73 (2006), p. 020101R
[28] J. Phys.: Condens. Matter, 11 (1999), p. 8633
[29] Phys. Rev. B, 65 (2003), p. 094103
[30] Defect and Diffusion Forum, 143 (1997), p. 385
[31] Phys. Rev. B, 76 (2007), p. 054107
[32] Phys. Rev. B, 71 (2005), p. 174115
[33] Phys. Rev. B, 67 (2003), p. 012407
- Ab initio investigation into the stability of hydrogen isotopes (protium, deuterium, and tritium) in α -Fe and dilute FeCr alloys, Physical Review Materials, Volume 9 (2025) no. 3 | DOI:10.1103/physrevmaterials.9.035401
- Monte-Carlo simulation of mass density field coupled dynamics for microstructural evolution of Fe-Cr binary alloys, Acta Physica Sinica, Volume 72 (2023) no. 13, p. 136401 | DOI:10.7498/aps.72.20230291
- Energy landscapes in inorganic chemistry, Comprehensive Inorganic Chemistry III (2023), p. 262 | DOI:10.1016/b978-0-12-823144-9.00127-8
- Elastic dipole tensors and relaxation volumes of point defects in concentrated random magnetic Fe-Cr alloys, Computational Materials Science, Volume 194 (2021), p. 110435 | DOI:10.1016/j.commatsci.2021.110435
- An object kinetic Monte Carlo method to model precipitation and segregation in alloys under irradiation, Journal of Nuclear Materials, Volume 557 (2021), p. 153236 | DOI:10.1016/j.jnucmat.2021.153236
- Composition Stability and Cr-Rich Phase Formation in W-Cr-Y and W-Cr-Ti Smart Alloys, Metals, Volume 11 (2021) no. 5, p. 743 | DOI:10.3390/met11050743
- First-principles model for voids decorated by transmutation solutes: Short-range order effects and application to neutron irradiated tungsten, Physical Review Materials, Volume 5 (2021) no. 6 | DOI:10.1103/physrevmaterials.5.065401
- Model of Decomposition of Alloy with Two Magnetic Components: the BCC FeCr System, Physics of Metals and Metallography, Volume 122 (2021) no. 11, p. 1031 | DOI:10.1134/s0031918x21110120
- Atomistic Kinetic Monte Carlo and Solute Effects, Handbook of Materials Modeling (2020), p. 2437 | DOI:10.1007/978-3-319-44680-6_136
- Correlation between microstructure and magnetic properties during phase separation in concentrated Fe-Cr alloys, Journal of Magnetism and Magnetic Materials, Volume 506 (2020), p. 166763 | DOI:10.1016/j.jmmm.2020.166763
- First-principles study of bcc Fe-Cr-Si binary and ternary random alloys from special quasi-random structure, Physica B: Condensed Matter, Volume 586 (2020), p. 412085 | DOI:10.1016/j.physb.2020.412085
- Chemical short-range order in derivative Cr–Ta–Ti–V–W high entropy alloys from the first-principles thermodynamic study, Physical Chemistry Chemical Physics, Volume 22 (2020) no. 41, p. 23929 | DOI:10.1039/d0cp03764h
- Flux effects in precipitation under irradiation – Simulation of Fe-Cr alloys, Acta Materialia, Volume 164 (2019), p. 586 | DOI:10.1016/j.actamat.2018.10.063
- Magnetic and atomic short range order in Fe1−xCrx alloys, Physical Review B, Volume 100 (2019) no. 22 | DOI:10.1103/physrevb.100.224406
- Atomistic Kinetic Monte Carlo and Solute Effects, Handbook of Materials Modeling (2018), p. 1 | DOI:10.1007/978-3-319-50257-1_136-1
- Effect of Chromium Addition on the Coarsening of Cu-particle in Ferritic Stainless Steels, Tetsu-to-Hagane, Volume 104 (2018) no. 7, p. 385 | DOI:10.2355/tetsutohagane.tetsu-2018-003
- Interatomic potential to study the formation of NiCr clusters in high Cr ferritic steels, Journal of Nuclear Materials, Volume 484 (2017), p. 42 | DOI:10.1016/j.jnucmat.2016.11.017
- A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys, Journal of Physics: Condensed Matter, Volume 29 (2017) no. 14, p. 145403 | DOI:10.1088/1361-648x/aa5f37
- Ab initio modeling of decomposition in iron based alloys, Physics of Metals and Metallography, Volume 117 (2016) no. 13, p. 1293 | DOI:10.1134/s0031918x16130019
- Constrained non-collinear magnetism in disordered Fe and Fe–Cr alloys, Annals of Nuclear Energy, Volume 77 (2015), p. 246 | DOI:10.1016/j.anucene.2014.10.042
- Phase stability of ternary fcc and bcc Fe-Cr-Ni alloys, Physical Review B, Volume 91 (2015) no. 2 | DOI:10.1103/physrevb.91.024108
- Low- and high-temperature magnetism of Cr and Fe nanoclusters in iron-chromium alloys, Physical Review B, Volume 91 (2015) no. 9 | DOI:10.1103/physrevb.91.094430
- Segregation, precipitation, andα−α′phase separation in Fe-Cr alloys, Physical Review B, Volume 92 (2015) no. 21 | DOI:10.1103/physrevb.92.214113
- Phase stability of Fe–15wt. | DOI:10.1016/j.tca.2015.10.002
- The mechanism of radiation-induced segregation in ferritic–martensitic alloys, Acta Materialia, Volume 65 (2014), p. 42 | DOI:10.1016/j.actamat.2013.09.049
- Vacancy migration energy dependence on local chemical environment in Fe–Cr alloys: A Density Functional Theory study, Journal of Nuclear Materials, Volume 452 (2014) no. 1-3, p. 425 | DOI:10.1016/j.jnucmat.2014.05.007
- Thermodynamics of α′(Fe-Rich bcc) + α″(Cr-Rich bcc) → α(bcc) and α para → α ferro Transformations in Fe-20 wt pct Cr Alloy: Drop Calorimetry Study and Elucidation of Magnetic Contribution to Phase Stability, Metallurgical and Materials Transactions A, Volume 45 (2014) no. 8, p. 3386 | DOI:10.1007/s11661-014-2273-6
- , SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (2014), p. 01302 | DOI:10.1051/snamc/201401302
- Critical assessment of Cr-rich precipitates in neutron-irradiated Fe–12at | DOI:10.1016/j.jnucmat.2013.05.023
- On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe–Cr–W model alloy, Journal of Physics: Condensed Matter, Volume 25 (2013) no. 31, p. 315401 | DOI:10.1088/0953-8984/25/31/315401
- Atomic scale investigation of Cr precipitation in copper, Acta Materialia, Volume 60 (2012) no. 11, p. 4575 | DOI:10.1016/j.actamat.2012.01.038
- Measurement of 56Fe activity produced in inelastic scattering of neutrons created by cosmic muons in an iron shield, Applied Radiation and Isotopes, Volume 70 (2012) no. 1, p. 269 | DOI:10.1016/j.apradiso.2011.08.003
- First-principles models for phase stability and radiation defects in structural materials for future fusion power-plant applications, Journal of Materials Science, Volume 47 (2012) no. 21, p. 7385 | DOI:10.1007/s10853-012-6657-y
- Application of the inverse Kirkendall model of radiation-induced segregation to ferritic–martensitic alloys, Journal of Nuclear Materials, Volume 425 (2012) no. 1-3, p. 117 | DOI:10.1016/j.jnucmat.2011.10.035
- Magnetic cluster expansion simulation and experimental study of high temperature magnetic properties of Fe–Cr alloys, Journal of Physics: Condensed Matter, Volume 24 (2012) no. 32, p. 326001 | DOI:10.1088/0953-8984/24/32/326001
- Safety Monitoring of Materials and Components of Nuclear Power Plants, Nanodevices and Nanomaterials for Ecological Security (2012), p. 325 | DOI:10.1007/978-94-007-4119-5_30
- Atomistic modeling of long-term evolution of twist boundaries under vacancy supersaturation, Physical Review B, Volume 86 (2012) no. 21 | DOI:10.1103/physrevb.86.214109
- Kinetic study of phase transformation in a highly concentrated Fe–Cr alloy: Monte Carlo simulation versus experiments, Acta Materialia, Volume 59 (2011) no. 6, p. 2404 | DOI:10.1016/j.actamat.2010.12.038
- Modelling phase separation in Fe–Cr system using different atomistic kinetic Monte Carlo techniques, Journal of Nuclear Materials, Volume 417 (2011) no. 1-3, p. 1086 | DOI:10.1016/j.jnucmat.2010.12.193
- The effect of prolonged irradiation on defect production and ordering in Fe–Cr and Fe–Ni alloys, Journal of Physics: Condensed Matter, Volume 23 (2011) no. 35, p. 355007 | DOI:10.1088/0953-8984/23/35/355007
- Iron chromium potential to model high-chromium ferritic alloys, Philosophical Magazine, Volume 91 (2011) no. 12, p. 1724 | DOI:10.1080/14786435.2010.545780
- Phase stability, point defects, and elastic properties of W-V and W-Ta alloys, Physical Review B, Volume 84 (2011) no. 10 | DOI:10.1103/physrevb.84.104115
- Noncollinear magnetism at interfaces in iron-chromium alloys: The ground states and finite-temperature configurations, Physical Review B, Volume 84 (2011) no. 14 | DOI:10.1103/physrevb.84.144203
- Simple concentration-dependent pair interaction model for large-scale simulations of Fe-Cr alloys, Physical Review B, Volume 84 (2011) no. 18 | DOI:10.1103/physrevb.84.184205
- Atomic Scale Investigation of Cr Precipitation in Cu and Related Mechanical Properties., Solid State Phenomena, Volume 172-174 (2011), p. 291 | DOI:10.4028/www.scientific.net/ssp.172-174.291
- Cluster expansion models for Fe–Cr alloys, the prototype materials for a fusion power plant, Computational Materials Science, Volume 49 (2010) no. 4, p. S199 | DOI:10.1016/j.commatsci.2010.04.033
- Phase Equilibria and Thermodynamic Properties in the Fe-Cr System, Critical Reviews in Solid State and Materials Sciences, Volume 35 (2010) no. 2, p. 125 | DOI:10.1080/10408431003788472
- Magnetic cluster expansion model for bcc-fcc transitions in Fe and Fe-Cr alloys, Physical Review B, Volume 81 (2010) no. 18 | DOI:10.1103/physrevb.81.184202
- Prediction, determination and validation of phase diagrams via the global study of energy landscapes, International Journal of Materials Research, Volume 100 (2009) no. 2, p. 135 | DOI:10.3139/146.110010
- Short- and long-range orders in Fe–Cr: A Monte Carlo study, Journal of Applied Physics, Volume 106 (2009) no. 10 | DOI:10.1063/1.3257232
- Atomic scale analysis and phase separation understanding in a thermally aged Fe–20at. | DOI:10.1016/j.jnucmat.2008.10.008
- The EU programme for modelling radiation effects in fusion reactor materials: An overview of recent advances and future goals, Journal of Nuclear Materials, Volume 386-388 (2009), p. 1 | DOI:10.1016/j.jnucmat.2008.12.301
- Magnetic cluster expansion simulations of FeCr alloys, Journal of Nuclear Materials, Volume 386-388 (2009), p. 22 | DOI:10.1016/j.jnucmat.2008.12.052
- Magnetic properties of point defect interaction with impurity atoms in Fe–Cr alloys, Journal of Nuclear Materials, Volume 386-388 (2009), p. 60 | DOI:10.1016/j.jnucmat.2008.12.059
- Early stages ofα−α′phase separation in Fe-Cr alloys: An atomistic study, Physical Review B, Volume 79 (2009) no. 10 | DOI:10.1103/physrevb.79.104207
- Model many-body Stoner Hamiltonian for binary FeCr alloys, Physical Review B, Volume 80 (2009) no. 10 | DOI:10.1103/physrevb.80.104440
- Estimation of the solubility limit of Cr in Fe at 300°C from small-angle neutron scattering in neutron-irradiated Fe–Cr alloys, Scripta Materialia, Volume 61 (2009) no. 11, p. 1060 | DOI:10.1016/j.scriptamat.2009.08.028
- Ab initio and Monte Carlo modeling in Fe–Cr system: Magnetic origin of anomalous thermodynamic and kinetic properties, Computational Materials Science, Volume 44 (2008) no. 1, p. 1 | DOI:10.1016/j.commatsci.2008.01.035
- Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys, Journal of Nuclear Materials, Volume 382 (2008) no. 2-3, p. 112 | DOI:10.1016/j.jnucmat.2008.08.014
- On the α–α′ miscibility gap of Fe–Cr alloys, Scripta Materialia, Volume 59 (2008) no. 11, p. 1193 | DOI:10.1016/j.scriptamat.2008.08.008
Cité par 60 documents. Sources : Crossref
Commentaires - Politique