To understand the behaviour of irradiated defects and kinetic pathways of micro-structural evolution in Fe–Cr alloys, we use a combination of density functional theory with statistical approaches involving cluster expansions and Monte Carlo simulations. A lowest negative mixing enthalpy is found at 6.25% Cr that is consistent with our DFT prediction of an ordered Fe15Cr structure. At 50% Cr, it is found that the predicted enthalpy of formation is 4 times smaller than that calculated by the CPA approach. Thermodynamic and precipitation properties are then discussed in term of segregation between the Fe15Cr and -Cr phases and of vacancy-mediated kMC simulation.
Pour comprendre les propriétés des défauts d'irradiation et les cinétiques d'évolution des microstructures des alliages Fe–Cr, nous utilisons la théorie de la fonctionnelle de la densité combinée à des approches statistiques de type développement d'amas et Monte Carlo. L'énergie de mélange du système Fe–Cr présente un minimum pour une teneur en Cr de 6,25%, ce qui est en accord avec la prédiction des calculs de la structure ordonnée Fe15Cr, basés sur la fonctionnelle de la densité. Pour une teneur de 50% en Cr, on trouve une enthalpie de formation qui est quatre fois plus petite que celle calculée dans l'approche CPA. Nous discutons les propriétés thermodynamiques et la précipitation dans le système Fe–Cr en terme de séparation des phases Fe15Cr et riche en Cr, simulée par Monte Carlo cinétique basée sur un mécanisme lacunaire de diffusion.
Mot clés : Alliages Fe–Cr, Thermodynamiques, Kinétiques
Duc Nguyen-Manh 1; M.Yu. Lavrentiev 1; Sergei L. Dudarev 1
@article{CRPHYS_2008__9_3-4_379_0, author = {Duc Nguyen-Manh and M.Yu. Lavrentiev and Sergei L. Dudarev}, title = {The {Fe{\textendash}Cr} system: atomistic modelling of thermodynamics and kinetics of phase transformations}, journal = {Comptes Rendus. Physique}, pages = {379--388}, publisher = {Elsevier}, volume = {9}, number = {3-4}, year = {2008}, doi = {10.1016/j.crhy.2007.10.011}, language = {en}, }
TY - JOUR AU - Duc Nguyen-Manh AU - M.Yu. Lavrentiev AU - Sergei L. Dudarev TI - The Fe–Cr system: atomistic modelling of thermodynamics and kinetics of phase transformations JO - Comptes Rendus. Physique PY - 2008 SP - 379 EP - 388 VL - 9 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2007.10.011 LA - en ID - CRPHYS_2008__9_3-4_379_0 ER -
%0 Journal Article %A Duc Nguyen-Manh %A M.Yu. Lavrentiev %A Sergei L. Dudarev %T The Fe–Cr system: atomistic modelling of thermodynamics and kinetics of phase transformations %J Comptes Rendus. Physique %D 2008 %P 379-388 %V 9 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2007.10.011 %G en %F CRPHYS_2008__9_3-4_379_0
Duc Nguyen-Manh; M.Yu. Lavrentiev; Sergei L. Dudarev. The Fe–Cr system: atomistic modelling of thermodynamics and kinetics of phase transformations. Comptes Rendus. Physique, Volume 9 (2008) no. 3-4, pp. 379-388. doi : 10.1016/j.crhy.2007.10.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.011/
[1] J. Nucl. Mater., 233–237 (1996), p. 138
[2] J. Nucl. Mater., 87 (1979), p. 25
[3] Prog. Mater. Sci., 52 (2007), p. 255
[4] J. Phys.: Condens. Matter, 17 (2005), p. 7097
[5] Prog. Mater. Sci., 52 (2007), p. 299
[6] J. Nucl. Mater., 321 (2003), pp. 84-90
[7] Phys. Rev. Lett., 95 (2005), p. 075702
[8] Proceedings of the NATO ASI on “Statics and Dynamics of Alloy Phase Transformations” (P.E.A. Turchi; A. Gonis, eds.), Plenum Press, New York, 1994, p. 361
[9] Phys. Rev. B, 69 (2004), p. 020103(R)
[10] Phys. Rev. Lett., 93 (2004), p. 067202
[11] Phys. Rev. B, 75 (2007), p. 014208
[12] D. Nguyen-Manh, M.Yu. Lavrentiev, S.L. Dudarev, in: P. Gumbsch (Ed.), “Multiscale Materials Modeling”, Third International Conference, September 2006, Freiburg, Germany, pp. 767–770; J. Comp. Mater. Design (2007)
[13] Phys. Rev. B, 74 (2006), p. 224207
[14] Order and Phase Stability in Alloys, Elsevier, 1991
[15] CALPHAD, Calculation of Phase Diagrams, Pergamon, 1998
[16] J. Phys. F: Met. Phys., 13 (1983), p. 2351
[17] Phys. Met. Metallogr., 97 (2004), p. 4336
[18] Phys. Rev. B, 73 (2006), p. 104416
[19] Comp. Mat. Sci. (2007)
[20] VASP the GUIDE, Universität Wien, Austria, 2003
[21] Phys. Rev. B, 50 (1994), p. 3861
[22] A. Froideval, M. Samaras, M. Victoria, W. Hoffelner, Abstract No. JJ3.6, MRS Fall Meeting, November, Boston, 2006
[23] Phys. Rev. Lett., 53 (1984), p. 687
[24] Phys. Rev. B, 52 (1995), p. 3280
[25] Appl. Phys. Lett., 89 (2006), p. 121902
[26] Phys. Rev. Lett., 92 (2004), p. 175503
[27] Phys. Rev. B, 73 (2006), p. 020101R
[28] J. Phys.: Condens. Matter, 11 (1999), p. 8633
[29] Phys. Rev. B, 65 (2003), p. 094103
[30] Defect and Diffusion Forum, 143 (1997), p. 385
[31] Phys. Rev. B, 76 (2007), p. 054107
[32] Phys. Rev. B, 71 (2005), p. 174115
[33] Phys. Rev. B, 67 (2003), p. 012407
Cited by Sources:
Comments - Policy