[Réacteur Jules-Horowitz : un réacteur d'haute performance pour des essais des matériaux]
La modélisation physique du comportement des matériaux en environnement sévère est une contribution indispensable au développement des systèmes innovants, qu'ils soient basés sur la fission ou la fusion : identification, conception, optimisation, fabrication, approbation, évaluation de la durée de vie d'une nouvelle génération de matériaux de structure et de combustibles qui seront capables de fonctionner sous haut flux de neutrons rapides et à haute températures avec la production d'éléments tels que l'hélium et l'hydrogène.
Des outils analytiques tels que JANNUS sont développés dans ce but. Toutefois une approche purement analytique ne suffit pas : il faut également pouvoir réaliser des expérimentations dans un environnement représentatif, où les phénomènes sont effectivement couplés, avec une instrumentation permettant des mesures de haute qualité. Ces expériences sont conduites dans des réacteurs de recherche (Material Testing Reactors, MTR). De plus, des expériences complémentaires sont généralement conduites sur des prototypes ou des installations spécifiques comme IFMIF pour la fusion. Un réel pouvoir prédictif de la modélisation ne peut être atteint qu'en s'appuyant sur un tel ensemble cohérent d'outils, couvrant une large gamme d'échelles d'observation. Cette stratégie est exposée sur le cas du développement des matériaux composites à base de carbure de silicium.
En raison du vieillissement des MTR actuellement en fonctionnement, il était nécessaire de mettre en place une nouvelle génération de réacteurs expérimentaux en Europe pour faire face aux besoins en irradiations expérimentales. C'est dans ce contexte qu'est développé le réacteur Jules Horowitz (JHR). Celui-ci est financé par un consortium international et entrera en opération en 2014. JHR offrira à la communauté des performances accrues telles qu'un flux de neutrons élevé (
The physical modelling of materials' behaviour under severe conditions is an indispensable element for developing future fission and fusion systems: screening, design, optimisation, processing, licensing, and lifetime assessment of a new generation of structure materials and fuels, which will withstand high fast neutron flux at high in-service temperatures with the production of elements like helium and hydrogen.
JANNUS and other analytical experimental tools are developed for this objective. However, a purely analytical approach is not sufficient: there is a need for flexible experiments integrating higher scales and coupled phenomena and offering high quality measurements; these experiments are performed in material testing reactors (MTR). Moreover, complementary representative experiments are usually performed in prototypes or dedicated facilities such as IFMIF for fusion. Only such a consistent set of tools operating on a wide range of scales, can provide an actual prediction capability. A program such as the development of silicon carbide composites (600–1200 °C) illustrates this multiscale strategy.
Facing the long term needs of experimental irradiations and the ageing of present MTRs, it was thought necessary to implement a new generation high performance MTR in Europe for supporting existing and future nuclear reactors. The Jules Horowitz Reactor (JHR) project copes with this context. It is funded by an international consortium and will start operation in 2014. JHR will provide improved performances such as high neutron flux (
Mots-clés : Réacteur Jules-Horowitz, Essai des matériaux
Daniel Iracane 1 ; Pascal Chaix 1 ; Ana Alamo 1
@article{CRPHYS_2008__9_3-4_445_0, author = {Daniel Iracane and Pascal Chaix and Ana Alamo}, title = {Jules {Horowitz} {Reactor:} a high performance material testing reactor}, journal = {Comptes Rendus. Physique}, pages = {445--456}, publisher = {Elsevier}, volume = {9}, number = {3-4}, year = {2008}, doi = {10.1016/j.crhy.2007.11.003}, language = {en}, }
Daniel Iracane; Pascal Chaix; Ana Alamo. Jules Horowitz Reactor: a high performance material testing reactor. Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 445-456. doi : 10.1016/j.crhy.2007.11.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.11.003/
[1] Fissile core and T-breeding blanket: the structural materials and their requirements, C. R. Physique, Volume 9 (2008) no. 3–4, pp. 287-302
[2] FEUNMARR, Future European Union Needs in Material Research Reactors, 5th FP thematic network, November 2001 – October 2002
[3] C. Vitanza, D. Iracane, D. Parrat, Future needs for materials test reactors in Europe (FEUNMARR Findings), in: 7th International Topical Meeting on Research Reactor Fuel Management, ENS, RRFM 2003
[4] D. Iracane, The Jules Horowitz Reactor, a new Material Testing Reactor in Europe, in: Proc. TRTR-2005/IGORR-10 Joint Meeting, Gaithersburg, September 2005
[5] F. Carre, Fast reactors R&D strategy in France for a sustainable energy supply and reduction of environmental burdens, JAIF International Symposium – Tokyo, March 24, 2005
[6] J.P. Dupuy, G. Ithurralde, G. Perotto, C. Leydier, X. Bravo, Jules Horowitz Reactor: General layout, main design options resulting from safety options, technical performances and operating constraints, IGORR 10, Gaithersburg, September 2005
[7] C. Pascal, Y. Demoisy, S. Gaillot, X. Bravo, F. Javier, Jules Horowitz Reactor: experimental capabilities, IGORR 10, Gaithersburg, September 2005
[8] M. Boyard, J.M. Cherel, C. Pascal, B. Guigon, The Jules Horowitz Reactor core and cooling system design, IGORR 10, Gaithersburg, September 2005
[9] J.L. Snelgrove, P. Lemoine, L. Alvarez, N. Arkhangelsky, High density UMo fuels last results and reoriented qualification programs, in: 9th International Topical Meeting on Research Reactor Fuel Management, ENS, RRFM 2005
[10] D. Iracane, D. Parrat, J. Dekeyser, H. Bergmans, K. Bakker, S. Tahtinen, J. Kysela, C. Pascal, A. Jianu, D. Moulin, M. Auclair, L. Fournier, S. Carassou, S. Gaillot, The JHR Co-ordination Action (JHR-CA), an European collaboration for designing up-to-date irradiation devices for materials and fuels in MTRs, FISA2006, Luxembourg, March 2006
[11] D. Iracane, D. Parrat, Irradiation of fuels and materials in the JHR, The 6th European JHR Co-ordination Action (JHR-CA), in: 9th International Topical Meeting on Research Reactor Fuel Management, ENS, RRFM 2005
[12] G. Panichi, F. Julien, D. Parrat, D. Moulin, B. Pouchin, L. Buffe, N. Schmidt, L. Roux, Developing irradiation devices for fuel experiments in the Jules Horowitz Reactor, IGORR 10, Gaithersburg, September 2005
[13] S. Carassou, G. Panichi, F. Julien, P. Yvon, M. Auclair, S. Tahtinen, P. Moilanen, S. Maire, L. Roux, Experimental material irradiation on the Jules Horowitz Reactor, IGORR 10, Gaithersburg, September 2005
[14] J.F. Villard, Innovative in-pile instrumentation developments for irradiation experiments in MTRs, IGORR 10, Gaithersburg, September 2005
- European research reactor strategy derived in the scope of the towards optimized use of research reactors (TOURR) project, Annals of Nuclear Energy, Volume 211 (2025), p. 110963 | DOI:10.1016/j.anucene.2024.110963
- Advancing Nuclear Research and Education in Slovenia and EU: From Operating the TRIGA Reactor to Building a New Generation Facility, Arabian Journal for Science and Engineering, Volume 50 (2025) no. 5, p. 3519 | DOI:10.1007/s13369-024-09621-2
- Application of similarity analysis method in neutronics design of multi-purpose experimental reactor, Progress in Nuclear Energy, Volume 180 (2025), p. 105604 | DOI:10.1016/j.pnucene.2025.105604
- Multi-physics coupled analyzes of research nuclear reactors based on steady-state and kinetics models, Annals of Nuclear Energy, Volume 196 (2024), p. 110231 | DOI:10.1016/j.anucene.2023.110231
- Toward Confocal Chromatic Sensing in Nuclear Reactors: In Situ Optical Refractive Index Measurements of Bulk Glass, IEEE Transactions on Nuclear Science, Volume 69 (2022) no. 4, p. 722 | DOI:10.1109/tns.2022.3150221
- Silicon Carbide Neutron Detectors for Harsh Nuclear Environments: A Review of the State of the Art, IEEE Transactions on Nuclear Science, Volume 69 (2022) no. 4, p. 792 | DOI:10.1109/tns.2022.3144125
- Absorption kinetics of vacancies by cavities in aluminum: Numerical characterization of sink strengths and first-passage statistics through Krylov subspace projection and eigenvalue deflation, Journal of Computational Physics, Volume 454 (2022), p. 110987 | DOI:10.1016/j.jcp.2022.110987
- Preliminary study on the thermal-mechanical performance of the U3Si2/Al dispersion fuel plate under normal conditions, Nuclear Engineering and Technology, Volume 53 (2021) no. 11, p. 3723 | DOI:10.1016/j.net.2021.05.014
- The use of U3Si2/Al dispersion fuel for high power research reactors, Journal of Nuclear Materials, Volume 528 (2020), p. 151820 | DOI:10.1016/j.jnucmat.2019.151820
- A Brief Review of Metallothermic Reduction Reactions for Materials Preparation, Small Methods, Volume 2 (2018) no. 12 | DOI:10.1002/smtd.201800062
- Influence of plastic deformation on the precipitation sequence in an AA6061 alloy, Journal of Materials Science, Volume 52 (2017) no. 10, p. 6063 | DOI:10.1007/s10853-017-0845-8
- An improved thermal-hydraulic modeling of the Jules Horowitz Reactor using the CATHARE2 system code, Nuclear Engineering and Design, Volume 311 (2017), p. 156 | DOI:10.1016/j.nucengdes.2016.11.029
- Hot fuel element thermal-hydraulics in the Jules Horowitz Reactor, Nuclear Engineering and Design, Volume 300 (2016), p. 149 | DOI:10.1016/j.nucengdes.2016.01.031
- Hydraulic modeling of the Jules Horowitz Reactor: Mass flow split between 36 fuel elements, Nuclear Engineering and Design, Volume 308 (2016), p. 9 | DOI:10.1016/j.nucengdes.2016.08.008
- Electron irradiation-enhanced core/shell organization of Al(Cr, Fe, Mn)Si dispersoids in Al–Mg–Si alloys, Philosophical Magazine, Volume 95 (2015) no. 8, p. 906 | DOI:10.1080/14786435.2015.1009959
- Comparison of the Thermal Response of Two Calorimetric Cells Dedicated to Nuclear Heating Measurements During Calibration, IEEE Transactions on Nuclear Science, Volume 61 (2014) no. 4, p. 2254 | DOI:10.1109/tns.2014.2306839
- A review of the current thermal-hydraulic modeling of the Jules Horowitz Reactor: A loss of flow accident analysis, Nuclear Engineering and Design, Volume 280 (2014), p. 294 | DOI:10.1016/j.nucengdes.2014.09.019
- Technology and policy issues relating to future developments in research and radioisotope production reactors, Progress in Nuclear Energy, Volume 77 (2014), p. 201 | DOI:10.1016/j.pnucene.2014.05.007
- , 2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA) (2013), p. 1 | DOI:10.1109/animma.2013.6728001
- Magnesiothermic Reduction Process Applied to the Powder Production of U(Mo) Fissile Particles, Advanced Engineering Materials, Volume 15 (2013) no. 4, p. 257 | DOI:10.1002/adem.201200235
- Numerical and Experimental Calibration of a Calorimetric Sample Cell Dedicated to Nuclear Heating Measurements, IEEE Transactions on Nuclear Science, Volume 59 (2012) no. 6, p. 3173 | DOI:10.1109/tns.2012.2215923
- , 2011 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (2011), p. 1 | DOI:10.1109/animma.2011.6172902
- Dimensioning the EVITA semi-open loop at BR2 for qualification of full size JHR fuel elements, Nuclear Engineering and Design, Volume 241 (2011) no. 3, p. 925 | DOI:10.1016/j.nucengdes.2011.01.014
- Langevin model for real-time Brownian dynamics of interacting nanodefects in irradiated metals, Physical Review B, Volume 81 (2010) no. 22 | DOI:10.1103/physrevb.81.224107
- Emission and transmission tomography systems to be developed for the future needs of Jules Horowitz material testing reactor, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 607 (2009) no. 1, p. 61 | DOI:10.1016/j.nima.2009.03.113
Cité par 25 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier